Hunting black holes

Illustration by A.S.

Vitor Cardoso

(CENTRA/IST & Olemiss)

Berti, Cardoso, Gualtieri, Pretorius, Sperhake, Phys.Rev.Lett.103:239001 (2009) Bouhmadi-Lopez, Cardoso, Nerozzi, Rocha, Phys.Rev.D81:084051 (2010) Barausse, Cardoso, Khanna, Phys.Rev.Lett., in press.

III BH workshop 21-22 Dez 2010 | Braga Portugal

4D BHs have no hair & are L-stable

BHs in GR are characterized by only three quantities: mass, spin and electric charge

Kerr naked singularities are unstable

- Against ergo-region kind of instabilities
- Against algebraically-special type
- Generically unstable to variety of effects

Dotti and Gleiser '08; Cardoso et al '08, Barausse et al '10

How to kill a BH

Black holes rotate slowly... so spin them to death! Impossible with point particles...

(Jorge Rocha, also Zaaslavki, this workshop)

But perhaps we can throw a larger rock!

Illustration by A.S.

Take
$$\epsilon \ll 1$$
 with $a \equiv J/M^2 = 1 - 2\epsilon^2$
 $L_{\min} = 2\epsilon^2 + 2E + E^2 < L < L_{\max} = (2 + 4\epsilon)E$

Imposing $L_{\text{max}} > L_{\text{min}}$ then yields

$$a_f^{JS} = \frac{a+L}{(1+E)^2} = 1 + 8\epsilon^2(1-x)xy + \mathcal{O}(\epsilon^3) > 1$$

 $E_{\min} = (2-\sqrt{2})\epsilon < E < E_{\max} = (2+\sqrt{2})\epsilon$

Jacobson & Sotiriou, '09

Radiation reaction

$$a_f = 1 + 8\epsilon^2 (1 - x)xy + 2E_{\text{rad}} - L_{\text{rad}} + \mathcal{O}(\epsilon^3)$$

Radiation reaction

L/E=2 is critical for extreme Kerr...

Thus *some* impact parameters *must* give rise to too large radiation...

Do all?

$$b = b_{\rm ph}(1-k)$$
, with $k \ll \epsilon \ll 1$

$$\frac{d\phi}{dr} \approx \left(\frac{8}{3} + \frac{\sqrt{3}}{2\epsilon}\right) \left[\frac{8}{\sqrt{3}}k\epsilon + 3(r - r_{\min})^2\right]^{-1/2}$$
$$N_{\text{cycles}} \approx \left[A + B\log\left(k\epsilon\right)\right] \left(\frac{8}{3} + \frac{\sqrt{3}}{2\epsilon}\right)$$

But fluxes are proportional to number of cycles

$$\Delta E(\epsilon) = E_1(\epsilon)(1+e_2\epsilon),$$

$$\Delta L(\epsilon) = 2E_1(\epsilon)[1+(\sqrt{3}+e_2)\epsilon]$$

 $E_1(\epsilon)$ is the energy flux for a single orbit, e_2 is an undetermined coefficient

$$E_1 \sim (r - r_H) E^2 \sim \epsilon E^2 \sim \epsilon^3$$

At leading order in ϵ , this results in

$$E_{\rm rad} = \Delta E(\epsilon) \times N_{\rm cycles} \sim \log (k\epsilon)\epsilon^2$$

Chrzanowski '76, Chrzanowski & Misner '74

Numerical results

a	0.99	0.992	0.994	0.996	0.998	0.999	0.9998
a_f	0.882	0.928	0.961	0.984	0.997	0.9996	1.00006
a_f^{JS}	1.0043	1.0035	1.0026	1.0018	1.0009	1.00045	1.00009

Particle with energy $E = 2\epsilon$ and angular momentum $L = b_{\rm ph} E(1 - 10^{-5})$

Is this the end of the dynamic duo?

...Perhaps not...

Consider BH with radius R*g*=2M in background with curvature *L*>>R*g* To study motion of BH do matched asymptotic expansion:

gint=BH+H1(r/L)+... gext=background+h1(Rg/L)+...

Match & get motion
$$u^{\mu}\nabla_{\mu}u^{\nu} = f_{\text{cons}}^{\nu} + f_{\text{diss}}^{\nu} + \mathcal{O}(R_g/\mathcal{L})^2$$

Dissipative is taken care of...conservative seems to have correct sign (*Barack & Sago, 2010*) and magnitude to prevent absorption...but much more work is needed

Is GR self-consistent? The CCC is a wonderful tool to think about universe, but far from established

*

The event horizon is a stabilizing surface against instabilities

In the case of PP, dissipative effects do not save the BH...but conservative effects shrink the BH to dodge the bullet!

Thank you