Black hole bombs

S Vítor Cardoso • June 06, 2012 • Perimeter Institute み

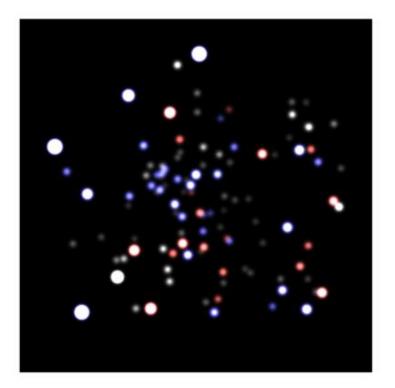
© A.S./DyBHo

More info at http://blackholes.ist.utl.pt

erc supports this project

Berti, Brito, Gualtieri, Ishibashi, Pani, Sperhake, Witek, Yunes

Cardoso et al, Phys. Rev. Lett. 107:241101 (2011) Yunes et al, Phys. Rev. D 81:084052 (2011) Pani et al, Phys. Rev. Lett., submitted (2012) Witek et al, in preparation (2012?)



Credit: ESO/MPE (2010)

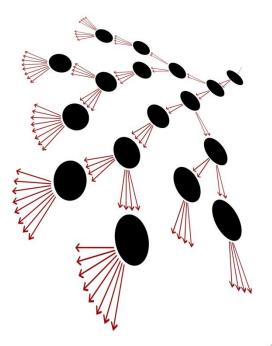
Credit: ESO/MPE/M.Schartmann (2011)

Gillessen et al, Nature 481, 51 (2012)

AGN	а	\mathbf{W}_{Klpha}	q_1	$\rm Fe/solar$	ξ	$\log M$	$L_{\rm bol}/L_{\rm Edd}$	Host	WA
$MCG-6-30-15^{a}$	≥ 0.98	305^{+20}_{-20}	$4.4_{-0.8}^{+0.5}$	$1.9^{+1.4}_{-0.5}$	68^{+31}_{-31}	$6.65_{-0.17}^{+0.17}$	$0.40^{+0.13}_{-0.13}$	E/S0	yes
Fairall 9 ^b	$0.65\substack{+0.05\\-0.05}$	130^{+10}_{-10}	$5.0\substack{+0.0\\-0.1}$	$0.8\substack{+0.2 \\ -0.1}$	$3.7^{+0.1}_{-0.1}$	$8.41_{-0.11}^{+0.11}$	$0.05\substack{+0.01\\-0.01}$	\mathbf{Sc}	no
SWIFT J2127.4 $+5654^{c}$	$0.6\substack{+0.2\\-0.2}$	220^{+50}_{-50}	$5.3^{+1.7}_{-1.4}$	$1.5^{+0.3}_{-0.3}$	40^{+70}_{-35}	$7.18^{+0.07}_{-0.07}$	$0.18\substack{+0.03\\-0.03}$		yes
$1H0707-495^{d}$	≥ 0.98	1775^{+511}_{-594}	$6.6^{+1.9}_{-1.9}$	≥ 7	50^{+40}_{-40}	$6.70\substack{+0.40\\-0.40}$	$\sim 1.0_{-0.6}$		no
Mrk 79^e	$0.7\substack{+0.1 \\ -0.1}$	377^+47_{-34}	$3.3^{+0.2}_{-0.1}$	1.2*	177^{+6}_{-6}	$7.72_{-0.14}^{+0.14}$	$0.05\substack{+0.01\\-0.01}$	SBb	yes
Mrk 335^{f}	$0.70\substack{+0.12\\-0.01}$	146^{+39}_{-39}	$6.6^{+2.0}_{-1.0}$	$1.0^{+0.1}_{-0.1}$	207^{+5}_{-5}	$7.15_{-0.13}^{+0.13}$	$0.25_{-0.07}^{+0.07}$	S0a	no
NGC 7469 ^f	$0.69\substack{+0.09 \\ -0.09}$	91^{+9}_{-8}	≥ 3.0	≤ 0.4	≤ 24	$7.09\substack{+0.06\\-0.06}$	$1.12_{-0.13}^{+0.13}$	SAB(rs)a	no
NGC 3783^g	≥ 0.98	263^{+23}_{-23}	$5.2_{-0.8}^{+0.7}$	$3.7^{+0.9}_{-0.9}$	≤ 8	$7.47_{-0.08}^{+0.08}$	$0.06\substack{+0.01\\-0.01}$	SB(r)ab	yes

Brenneman et al, ApJ736, 103 (2011)

Fission through BH superradiance?



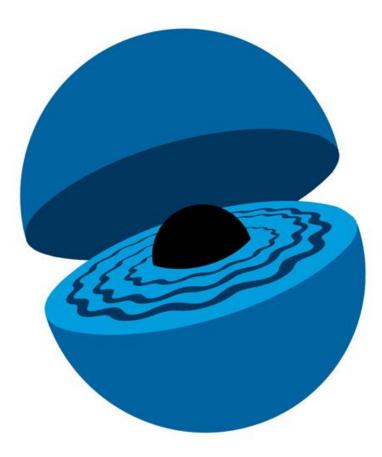
© A.S./DyBHo

$$\begin{split} \sigma &\sim r_{+}^{D-2} < 0 \\ \ell_{\rm free \ path} &\sim \frac{1}{\sigma n} \\ \ell_{\rm free \ path} &\leq R \rightsquigarrow \frac{NM}{R^{D-3}} \gtrsim N^{\frac{1}{D-2}} \end{split}$$

No fission for D>3

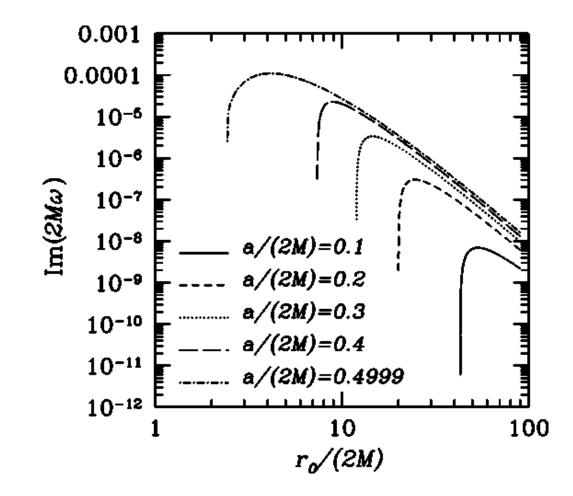
Black hole bombs

Zel'dovich '71; Press and Teukolsky '72; Cardoso et al '04



© A.S./DyBHo

Scalar fields



Cardoso, Dias, Lemos & Yoshida '04

Nature may provide its own mirrors:

AdS boundaries ("covariant box") Cardoso & Dias '04; Jorge & Oscar's talk

Massive scalars Detweiler '80; Cardoso & Yoshida '05; Dolan '07

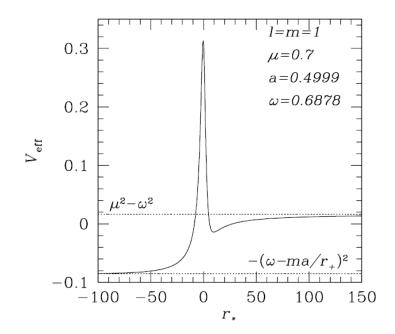
Interesting as effective description

Proxy for more complex interactions

Arise as interesting extensions of GR

(Brans-Dicke or generic scalar-tensor theories; quadratic f(R))

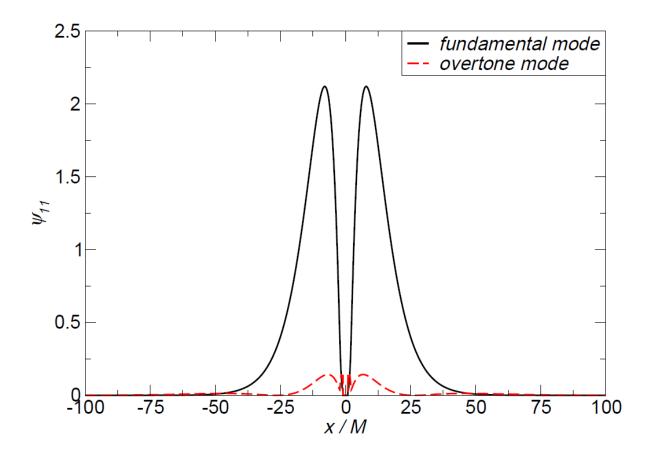
Axiverse scenarios (moduli and coupling constants in string theory, Peccei-Quinn mechanism in QCD, etc) *Arvanitaki et al '10*



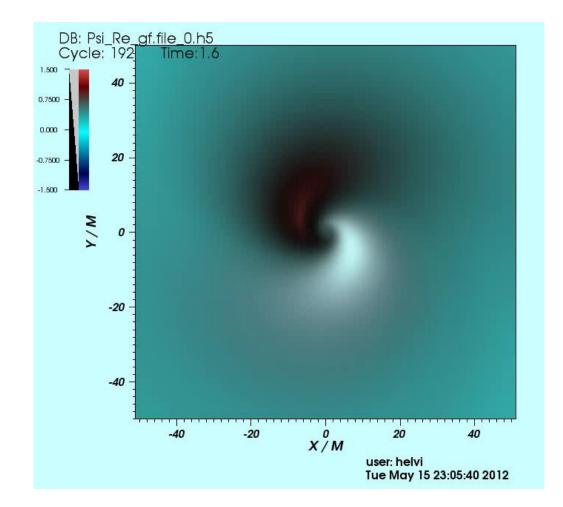
$$\omega_{\rm res}^2 = \mu_s^2 - \mu_s^2 \left(\frac{\mu_s M}{l+1+n}\right)^2 \qquad \omega_I = \mu_s \frac{(\mu_s M)^8}{24} \left(a/M - 2\mu_s r_+\right)$$

Massive scalar fields around Kerr are unstable

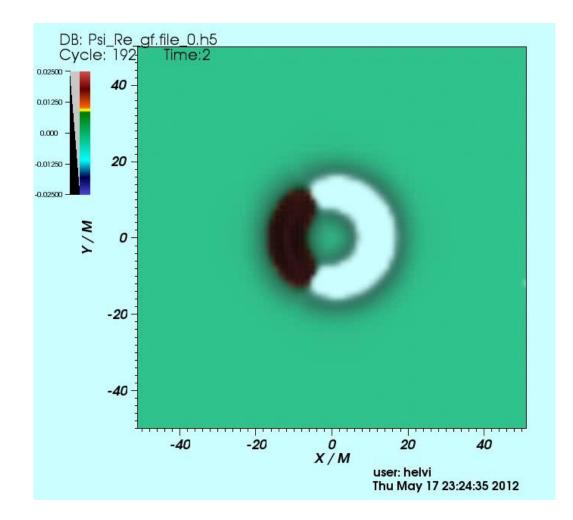
Damour et al '76; Detweiler '80; Cardoso & Yoshida '05; Dolan '07



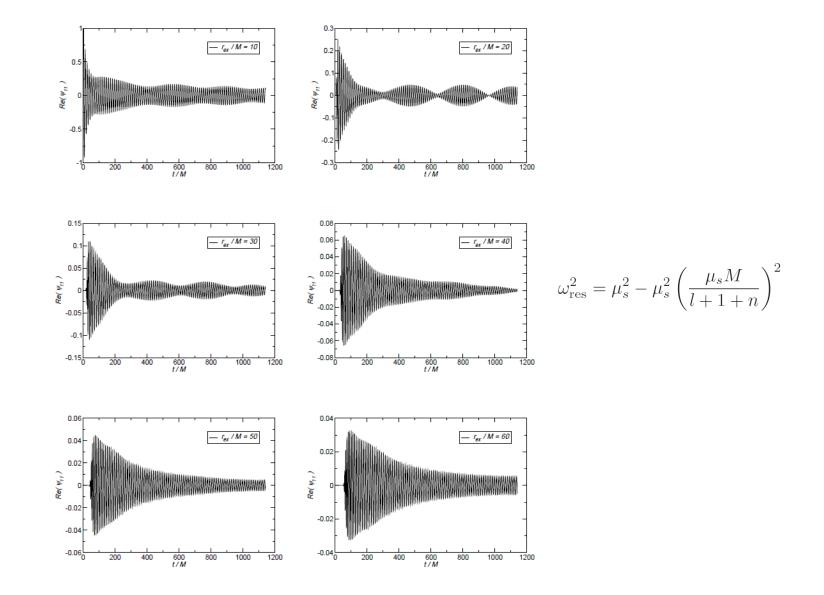
Witek et al, in preparation



Witek et al, in preparation

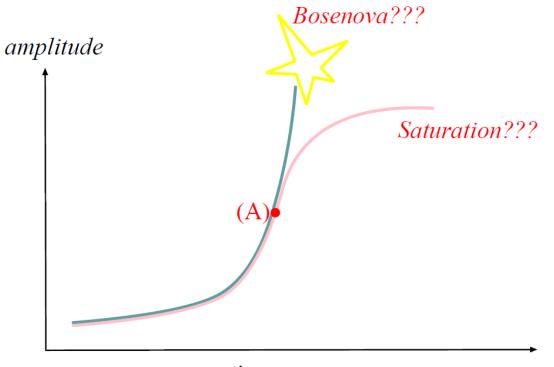


Beatings



Does this explain previous results, claiming smaller timescales?

Bosenova collapse of axion cloud



time

Yoshino and Kodama '12

Other fields

For rotating black holes, separability of massless fields is a miracle

Important: most objects spin! Non-separable problems

- * Massive vectors (Proca fields) on a Kerr background
- * Gravito-EM perturbations of KN BHs
- ***** Rotating objects in alternative theories
- * Rotating stars (r-mode, etc)
- * Myers-Perry BHs with generic spin, other rotating solutions
- * Stability, greybody factors, quasinormal modes?

Proca fields

$$\nabla_{\sigma} F^{\sigma\nu} - \mu^2 A^{\nu} = 0$$

$$\implies \nabla_{\sigma} A^{\sigma} = 0 \implies \Box A^{\nu} - \mu^2 A^{\nu} = 0$$

- Massive hidden U(1) fields are quite generic features of extensions of GR Goodsel et al '09; Jaekel et al '09; Goldhaber &Nieto '08
- Current bound on photon mass $\mu < 10^{-18} eV [PDG]$
- (Apparently) non-separable in Kerr background perturbations
- Massless EM in Kerr-(A)dS are separable

 $\nabla_{\sigma} F^{\sigma\nu} = 0 \implies \Box A^{\nu} - \nabla^{\nu} (\nabla_{\sigma} A^{\sigma}) + \Lambda A^{\nu} = 0$

• However, gauge freedom gives 2 dofs for massless. Proca implies Lorenz condition. No more freedom, 3dofs.

Perturbations of slowly rotating objects: first order

* Slowly rotating background

 $ds_0^2 = -F(r)dt^2 + B(r)^{-1}dr^2 + r^2d^2\Omega - 2\varpi(r)\sin^2\vartheta d\varphi dt$

* Expand any equation in spherical harmonics

 $\delta X_{\mu_1\dots}(t,r,\vartheta,\varphi) = \delta X_{\ell m}^{(i)}(r) \mathcal{Y}_{\mu_1\dots}^{\ell m\,(i)} e^{-\mathrm{i}\,\omega t}$

* For any metric, any theory: at first order, system of radial ODEs

 $\mathcal{A}_{\ell m} + \tilde{a}m\bar{\mathcal{A}}_{\ell m} + \tilde{a}(\mathcal{Q}_{\ell m}\tilde{\mathcal{P}}_{\ell-1m} + \mathcal{Q}_{\ell+1m}\tilde{\mathcal{P}}_{\ell+1m}) = 0$ $\mathcal{P}_{\ell m} + \tilde{a}m\bar{\mathcal{P}}_{\ell m} + \tilde{a}(\mathcal{Q}_{\ell m}\tilde{\mathcal{A}}_{\ell-1m} + \mathcal{Q}_{\ell+1m}\tilde{\mathcal{A}}_{\ell+1m}) = 0$

* Zeeman splitting, Laporte-like selection rule and propensity rule:

$$\mathcal{Q}_{\ell m} = \sqrt{\frac{(\ell - m)(\ell + m)}{(2\ell - 1)(2\ell + 1)}}$$

Kojima '93; Pani et al, to appear

Perturbations of slowly rotating objects: higher order

(Pani et al, in progress)

Change in horizon location, ergosphere appears, etc

$$0 = \mathcal{A}_{l}$$
 0th order

$$+\tilde{a}m\bar{\mathcal{A}}_{l} + \tilde{a}(\mathcal{Q}_{l}\tilde{\mathcal{P}}_{\ell-1} + \mathcal{Q}_{\ell+1}\tilde{\mathcal{P}}_{\ell+1})$$
 1st order

$$+\tilde{a}^{2}\left(\hat{\mathcal{A}}_{\ell m} + \mathcal{Q}_{l-1}\mathcal{Q}_{l}\breve{\mathcal{A}}_{\ell-2} + \mathcal{Q}_{\ell+2}\mathcal{Q}_{\ell+1}\breve{\mathcal{A}}_{\ell+2}\right)$$
 2nd order

$$0 = \mathcal{P}_{l}$$

$$+\tilde{a}m\bar{\mathcal{P}}_{l} + \tilde{a}(\mathcal{Q}_{l}\tilde{\mathcal{A}}_{\ell-1} + \mathcal{Q}_{\ell+1}\tilde{\mathcal{A}}_{\ell+1})$$

$$+\tilde{a}^{2}\left(\hat{\mathcal{P}}_{\ell m} + \mathcal{Q}_{l-1}\mathcal{Q}_{l}\breve{\mathcal{P}}_{\ell-2} + \mathcal{Q}_{\ell+2}\mathcal{Q}_{\ell+1}\breve{\mathcal{P}}_{\ell+2}\right)$$

$$\mathcal{A}_{L}$$

$$\mathcal{A}_{L}$$

$$\mathcal{P}_{L-1}$$

$$\mathcal{A}_{L-2}$$

$$\mathcal{P}_{L-3}$$

 $-\mathcal{P}_{T+2}$

Proca fields

$$\delta A_{\mu}(t,r,\vartheta,\varphi) = \sum_{l,m} \begin{bmatrix} 0\\ 0\\ u_{(4)}^{\ell m}(t,r)S_{a}^{\ell m} \end{bmatrix} + \sum_{l,m} \begin{bmatrix} u_{(1)}^{\ell m}(t,r)Y^{\ell m}\\ u_{(2)}^{\ell m}(t,r)Y^{\ell m}\\ u_{(3)}^{\ell m}(t,r)Y_{a}^{\ell m} \end{bmatrix}$$

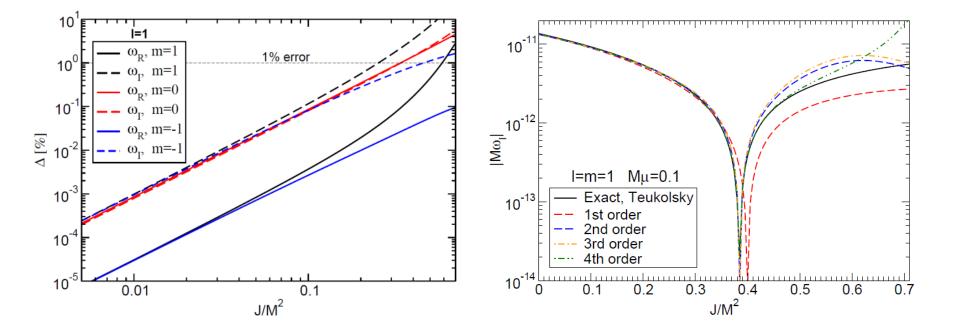
$$Y_a^{\ell m} = \left(\partial_{\vartheta} Y^{\ell m}, \partial_{\varphi} Y^{\ell m}\right)$$
$$S_a^{\ell m} = \left(\frac{1}{\sin\vartheta}\partial_{\varphi} Y^{\ell m}, -\sin\vartheta\partial_{\vartheta} Y^{\ell m}\right)$$

$$\begin{split} \hat{\mathcal{D}}_{2}u_{(4)}^{\ell} &- \frac{4\tilde{a}M^{2}m\omega}{r^{3}}u_{(4)}^{\ell} = \frac{6\tilde{a}M^{2}}{r^{4}}\left[(\ell+1)\mathcal{Q}_{\ell m}\left(Fu_{(1)}^{\ell-1} - \mathrm{i}\,r\omega u_{(2)}^{\ell-1} - Fru_{(1)}^{\prime}\right) + \ell\mathcal{Q}_{\ell+1m}\left(\mathrm{i}\,r\omega u_{(2)}^{\ell+1} - Fu_{(1)}^{\ell+1} + Fru_{(1)}^{\prime}\right)\right],\\ \mathrm{i}\,r\omega u_{(1)}^{\ell} + F\left(u_{(2)}^{\ell} - u_{(3)}^{\ell} + ru_{(2)}^{\prime}\right) - \frac{2\tilde{a}M^{2}m}{r^{2}}\left(\mathrm{i}\,u_{(1)}^{\ell} + \frac{r\omega}{\Lambda}u_{(3)}^{\ell}\right) = \frac{2\mathrm{i}\,\tilde{a}M^{2}\omega}{r\Lambda}\left[(\ell+1)\mathcal{Q}_{\ell m}u_{(4)}^{\ell-1} - \ell\mathcal{Q}_{\ell+1m}u_{(4)}^{\ell+1}\right],\\ \hat{\mathcal{D}}_{2}u_{(3)}^{\ell} + \frac{2F\ell(\ell+1)}{r^{2}}u_{(2)}^{\ell} + \frac{2\tilde{a}M^{2}m}{r^{4}}\left[r\omega(3u_{(2)}^{\ell} - 2u_{(3)}^{\ell}) + 3\mathrm{i}\,F\left(u_{(1)}^{\ell} - ru_{(1)}^{\prime}\right)\right] = 0,\\ \hat{\mathcal{D}}_{2}u_{(2)}^{\ell} - \frac{2F}{r^{2}}\left(1 - \frac{3M}{r}\right)\left[u_{(2)}^{\ell} - u_{(3)}^{\ell}\right] - \frac{2\tilde{a}M^{2}m}{\ell(\ell+1)r^{4}}\left[\ell(\ell+1)(2r\omega u_{(2)}^{\ell} - 3\mathrm{i}\,Fu_{(1)}^{\ell}) - 3r\omega Fu_{(3)}^{\ell}\right]\\ &= -\frac{6\mathrm{i}\,\tilde{a}M^{2}F\omega}{\ell(\ell+1)r^{3}}\left[(\ell+1)\mathcal{Q}_{\ell m}u_{(4)}^{\ell-1} - \ell\mathcal{Q}_{\ell+1m}u_{(4)}^{\ell+1}\right]\\ \hat{\mathcal{D}}_{2} = d^{2}/dr_{*}^{2} + \omega^{2} - F\left[\ell(\ell+1)/r^{2} + \mu^{2}\right] \end{split}$$

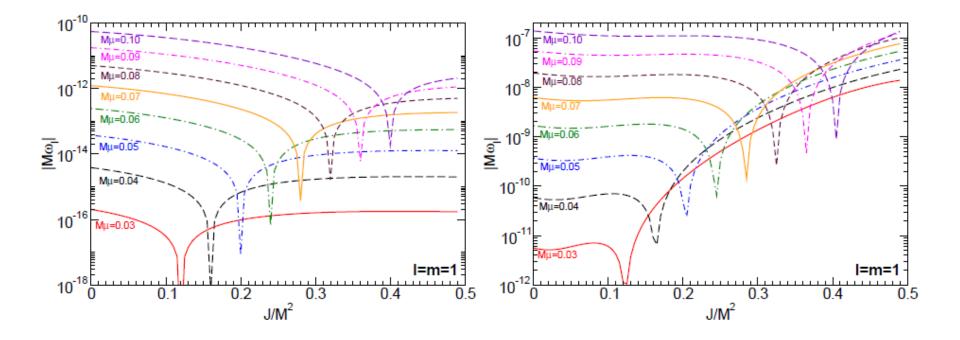
Integration of ODEs: Direct integration, continued fraction, "Breit-Wigner"

Check: massless (vector) perturbations

Check II: massive scalars



Pani et al, to appear

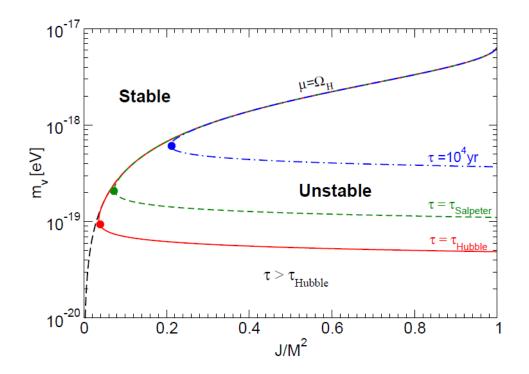


$$\tau_{\text{vector}} = \omega_I^{-1} \sim \frac{M(M\mu)^{-\gamma}}{\gamma_{-11}(\tilde{a} - 2\mu r_+)}$$

See also Rosa and Dolan '11

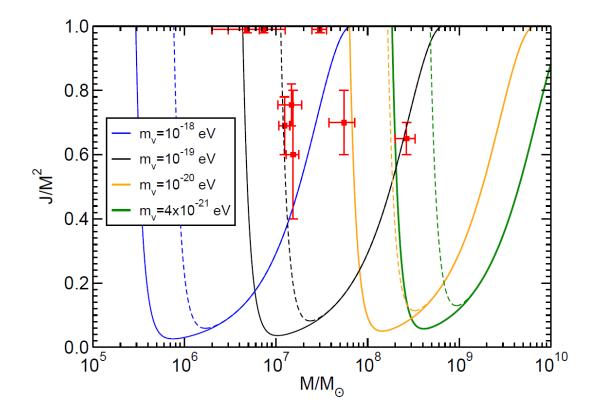
Pani et al, to appear

Proca instability



For a 10 million solar mass BH

Proca instability

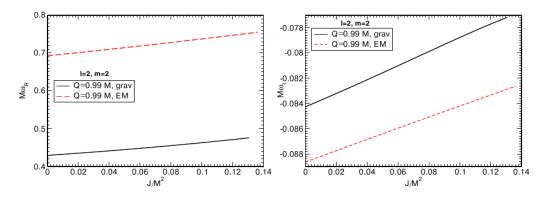


Depend very mildly on the fit coefficient and on the threshold

 $\tau_{Salpeter} \! \rightarrow \! timescale$ for accretion at the Eddington limit

Superradiance leads to interesting phenomena and can be instrumental to constrain or prove existence of massive scalars coupled to matter... Still a lot to do at the perturbative level.

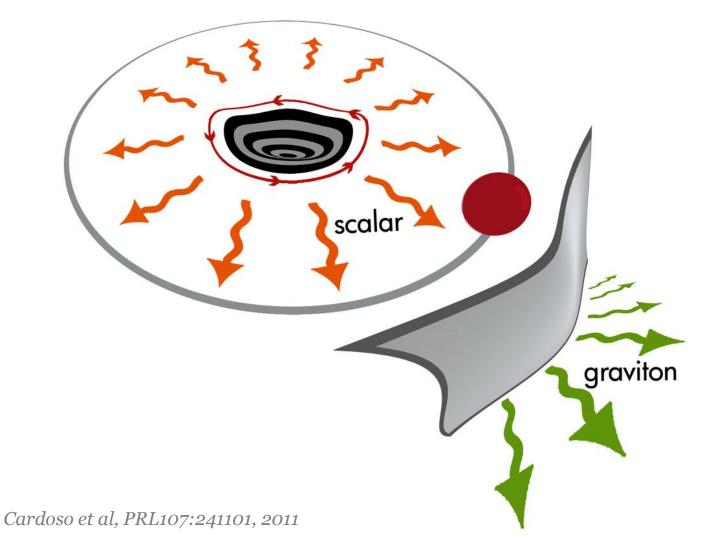
- * 3rd order and higher in rotation, under way
- * Gravito-EM perturbations of Kerr-Newman, under way



- * Higher dimensions: bar-modes, greybody factors, singly spinning?
- * Alternative theories?
- * Time-evolutions: purify the initial state, or wait!

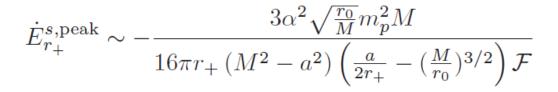
* Astrophysics: coupling to matter, can it deffuse the instability?

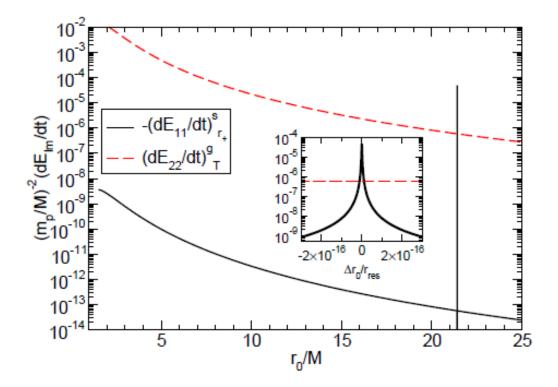
Floating orbits

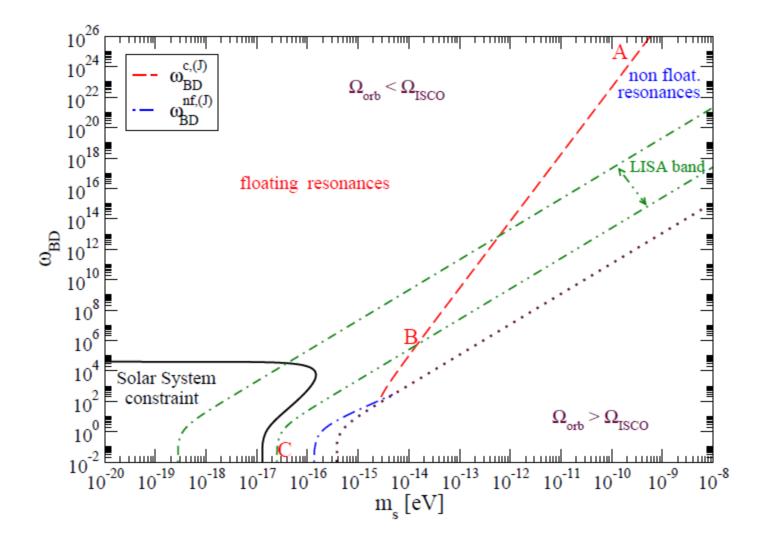


Yunes et al PRD81, 084052, 2012

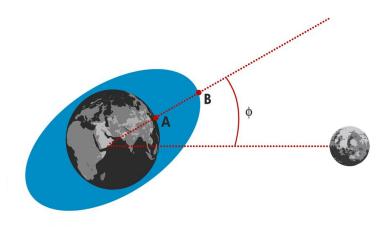
$$\left[\Box - \mu_s^2\right]\varphi = \alpha \mathcal{T}$$

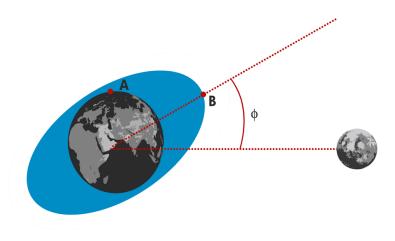






Rotational energy: tidal acceleration





Earth-moon: 0.002s/cent

4cm/yr

$$\mu = \frac{\kappa}{2} m_p \left(\frac{R}{r_0}\right)^3$$

$$\phi = (\Omega_H - \Omega)\tau$$

$$\dot{E}_{\text{orbital}} = 3G\kappa m_p^2 \frac{R^5}{r_0^6} \Omega(\Omega_H - \Omega)\tau$$

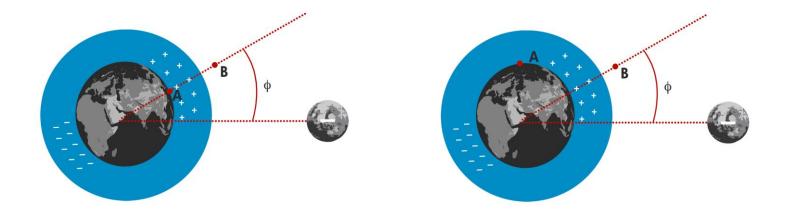
Tidal acceleration is in general impossible for BHs!

$$\dot{E}_{\rm H} \sim \frac{G^7}{c^{13}} \frac{M^6 m_p^2}{r_0^6} \Omega(\Omega - \Omega_H)$$

$$\dot{E}_{\infty} \sim \frac{32}{5} \frac{G^4}{c^5} \frac{M^3 m_p^2}{r_0^5}$$

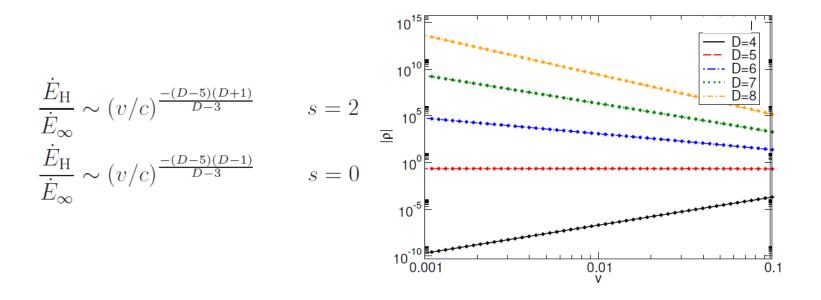
$$\frac{\dot{E}_{\rm H}}{\dot{E}_{\infty}} = \left(\frac{GM}{c^2 r_0}\right)^3 \frac{r_0 \Omega}{c} \left(\frac{r_0 \Omega - r_0 \Omega_H}{c}\right) \sim (v/c)^8$$

Press & Teukolsky, Nature (1973)



$$\sigma_{\rm pol} = 3\epsilon_0 \left(\frac{\epsilon_r - 1}{2\epsilon_r + 1}\right) E_0 \cos \theta$$
$$p = 4\pi\epsilon_0 \left(\frac{\epsilon_r - 1}{2\epsilon_r + 1}\right) R^3 E_0$$
$$\dot{E}_{\rm orbital} = \left(\frac{\epsilon_r - 1}{2\epsilon_r + 1}\right) \frac{q_p^2 R^3 \tau}{r_0^4} \Omega(\Omega_H - \Omega)$$

Tidal acceleration in higher dimensions



D>5 particles do not merge, tidal effects are too large?

Circular orbits are unstable, on much smaller timescale...what happens?!

Brito, Cardoso & Pani '12

Tidal acceleration is equivalent to superradiance in BH physics

In absence of other dissipative effects leads to floating

... still a lot to do:

- * Equal-mass case, what happens to floating?
- * Eccentricity OK, what about other sources of noise? Higher multipoles?
- * Spinning companion, is floating enhanced? Does is still require massive fields?
- Tidal acceleration requires dissipation (EH). Can it occur for spinning objects without horizon? In principle no, but Blandford-Zjanek seems to, or does it? (see Ruiz et al, arXiv:1203.4125)
- * Higher dimensional spacetime: tidal dissipation is dominant mechanism.
 Consequence for mergers?

Thank you

$$\cos \vartheta Y^{\ell} = \mathcal{Q}_{\ell+1} Y^{\ell+1} + \mathcal{Q}_{\ell} Y^{\ell-1},$$

$$\sin \vartheta \partial_{\vartheta} Y^{\ell} = \mathcal{Q}_{\ell+1} \ell Y^{\ell+1} - \mathcal{Q}_{\ell} (\ell+1) Y^{\ell-1},$$

$$\cos^{2} \vartheta Y^{\ell} = \left(\mathcal{Q}_{\ell+1}^{2} + \mathcal{Q}_{\ell}^{2}\right) Y^{\ell}$$

$$+ \mathcal{Q}_{\ell+1} \mathcal{Q}_{\ell+2} Y^{\ell+2} + \mathcal{Q}_{\ell} \mathcal{Q}_{\ell-1} Y^{\ell-2}$$

$$\cos\vartheta\sin\vartheta\partial_{\vartheta}Y^{\ell} = \left(\ell\mathcal{Q}_{\ell+1}^{2} - (\ell+1)\mathcal{Q}_{\ell}^{2}\right)Y^{\ell} + \mathcal{Q}_{\ell+1}\mathcal{Q}_{\ell+2}\ell Y^{\ell+2} - \mathcal{Q}_{\ell}\mathcal{Q}_{\ell-1}(\ell+1)Y^{\ell-2},$$