SISSA - May 22nd, 2012

Perturbations of slowly-rotating black holes

Paolo Pani

CENTRA – Instituto Superior Técnico

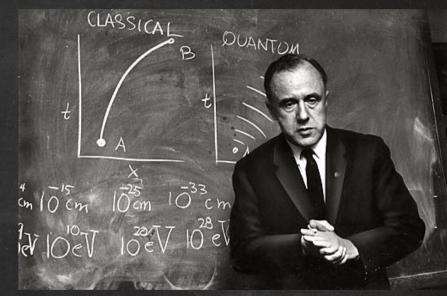
http://blackholes.ist.utl.pt

PP, Cardoso, Gualitieri, Berti, Ishibashi

to appear soon

Outline

- Motivation: the reach of perturbation theory
- Black hole perturbation theory in a nutshell
- Open problems
- Kojima's method for slowly-rotating stars
- Proca fields on a Kerr background
 - **Equations**
 - Superradiant instabilities
 - Astrophysical implications
- **Extensions**
 - Second order
 - **QNMs of Kerr-Newman BHs**

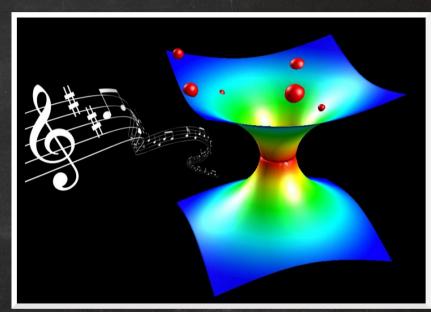


"Black holes teach us that space can be crumpled like a piece of paper into an infinitesimal dot, that time can be extinguished like a blown-out flame, and that the laws of physics that we regard as 'sacred', as immutable, are anything but".

> John Archibald Wheeler's Autobiography, 1998

Motivation

- Perturbation theory is ubiquitous in physics:
 - Epicycles in Ptolemaic astronomy
 - Stark and Zeeman effects
 - Feynman diagrams
- Particularly useful in GR:
 - BH and stellar perturbations
 - gravitational waves, cosmology, PN theory, ...



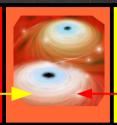
"Hearing" the spacetime shape

- PDEs → ODEs
- The reach of PT is given by its ability in simplifying the problem

Approx. methods VS Hard numerics

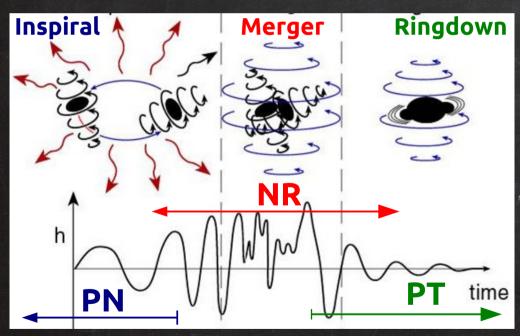
Idealized situations Physical insights "Easy" to perform

Approximate methods



Numerical methods

Realistic situations Numerics → Physics Supercomputers



Adapted from Thorne

- Approximate doesn't mean worst!
- Complementary approach
- Synergy between semianalytical and fully numerical methods

Part I BH perturbations in a nutshell

BH perturbations. Spherical symmetry

[Kokkotas & Schmidt 1998] [Berti et al. 2009] [Konoplya & Zhidenko 20111

$$ds^{2} = -f(r)dt^{2} + h(r)^{-1}dr^{2} + r^{2}d\Omega_{2} + (\delta_{RW}g_{\mu\nu})e^{-i\omega t}dx^{\mu}dx^{\nu}$$

background

perturbations

1) Regge-Wheeler formalism:

 $\|\delta_{\mathrm{RW}}g_{\mu\nu}\| = \begin{bmatrix} f(r)H_0(r)Y_{lm} & H_1(r)Y_{lm} & -h_0(r)\frac{1}{\sin\theta}\frac{\partial Y_{lm}}{\partial \varphi} & h_0(r)\sin\theta\frac{\partial Y_{lm}}{\partial \theta} \\ * & \frac{H_2(r)Y_{lm}}{h(r)} & -h_1(r)\frac{1}{\sin\theta}\frac{\partial Y_{lm}}{\partial \varphi} & h_1(r)\sin\theta\frac{\partial Y_{lm}}{\partial \theta} \\ * & * & r^2K(r)Y_{lm} & 0 \\ * & * & * & r^2\sin^2\theta K(r)Y_{lm} \end{bmatrix}$

- 2) Insert into Einstein eqs: 10 linearized coupled eqs (Mathematica helps!)
- 3) Fields redefinition and new "tortoise" coordinates: system of linear equations:

$$\frac{d^2\vec{\Psi}}{dr_*^2} + \left[\omega^2 - V(r)\right]\vec{\Psi} = 0$$

- 4) Solved with suitable boundary conditions (quasinormal modes, instabilities)
- 5) Any spherically symmetric background, any theory, any field

BH perturbations. Symmetries matter

- In spherically symmetry the field eqs. can be always separated
- If the background is rotating, separability is not guaranteed!
- Teukolsky formalism
 - Newman-Penrose tetrad formalism

[Teukolsky ~ 1973] [Teukolsky and Press] [Chandra's book]

- Weyl scalars
- Separability in Kerr is almost a miracle! (Petrov Type D)
- Perturbations of generic rotating BHs are important:
 - Astrophysical BHs are spinning
 - Stability (e.g. superradiance, r-modes in stars, no-hair theorem)

Non-separable (?) problems

- Four dimensions
 - Massive vector (Proca) fields on a Kerr background
 - Gravito-EM perturbations of Kerr-Newman BHs
 - Rotating objects in alternative theories
- Higher dimensions
 - Myers-Perry BHs with generic spins
 - Rotating solutions
- Stability, greybody factors, quasinormal modes?

Superradiance and BH bomb

[Press and Teukolsky '70]

- Amplified scattering of waves
- Requires <u>dissipation</u> → needs an event horizon

[Richartz et al. 2008] [Cardoso & Pani, 2012]

- Waves scattered off a Kerr BH are amplified if $\omega < m\Omega_H$
- Reflecting boundaries → BH bomb!

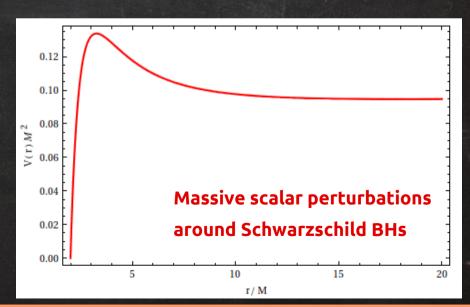
"Nature may provide its own mirrors"

[Cardoso & Dias, 2004]

- AdS boundaries
- Massive fields

[Thorne, Price, Macdonald's book]

Zel'dovich effect. [Credit: Ana Sousa]



Massive fields & superradiance

- Massive fields around spinning BHs are unstable
- Instability is well-studied in the scalar case
 - Strongest instability when µM ~1
 - Astrophysically relevant only for
 - Primordial BHs (10¹⁴ 10²³ kg) and SM particles
 - Ultra-light particles (m $\sim 10^{-21}$ 10^{-9} eV) and massive BHs
 - Axiverse scenario (QCD axions, Peccei-Quinn mechanism, etc...)

[Arvanitaki et al. 2010-2011]

- Bosenova (numerical simulations are challenging)
 [Kodama & Yoshino 2011-2012]
- The massive spin-1 case is still uncharted territory... (stronger instability?)
- Rosa and Dolan (2011) studied the non-rotating case

[Damour et al. 1976]
[Detweiler, 1980]
[Earley & Zouros]
[Cardoso & Yoshida 2005]
[Dolan 2007]

Part II Perturbations of slowly-rotating BHs

Method. Perturbations of slowly rotating spacetimes

[Kojima 1992, 1993, 1997]

Slowly-rotating background metric:

[Pani et al., to appear]

$$ds_0^2 = -F(r)dt^2 + B(r)^{-1}dr^2 + r^2d^2\Omega - 2\varpi(r)\sin^2\theta d\varphi dt$$

Expand any equation (scalar, vector, tensor...) in spherical harmonics

$$\delta X_{\mu_1...}(t,r,\vartheta,\varphi) = \delta X_{\ell m}^{(i)}(r) \mathcal{Y}_{\mu_1...}^{\ell m (i)} e^{-i\omega t}$$

For any metric, any theory and any perturbations: system of radial ODEs:

$$\mathcal{A}_{\ell m} + \tilde{a}m\bar{\mathcal{A}}_{\ell m} + \tilde{a}(\mathcal{Q}_{\ell m}\tilde{\mathcal{P}}_{\ell-1m} + \mathcal{Q}_{\ell+1m}\tilde{\mathcal{P}}_{\ell+1m}) = 0$$

$$\mathcal{P}_{\ell m} + \tilde{a}m\bar{\mathcal{P}}_{\ell m} + \tilde{a}(\mathcal{Q}_{\ell m}\tilde{\mathcal{A}}_{\ell-1m} + \mathcal{Q}_{\ell+1m}\tilde{\mathcal{A}}_{\ell+1m}) = 0$$

Zeeman splitting

 $Q_{\ell m} = \sqrt{\frac{\ell^2 - m^2}{4\ell^2 - 1}}$

- Laporte-like selection rule
- Propensity rule

 $\mathcal{A}\,,\mathcal{P} o ext{ Linear combinations of axial} \ ext{ and polar perturbations}$

Method. Perturbations of slowly rotating BHs

At first order in the rotation, the couplings can be neglected:

$$\mathcal{A}_{\ell m} + \tilde{a}m\bar{\mathcal{A}}_{\ell m} + \tilde{a}(\mathcal{Q}_{\ell m}\tilde{\mathcal{P}}_{\ell-1m} + \mathcal{Q}_{\ell+1m}\tilde{\mathcal{P}}_{\ell+1m}) = 0$$

$$\mathcal{P}_{\ell m} + \tilde{a}m\bar{\mathcal{P}}_{\ell m} + \tilde{a}(\mathcal{Q}_{\ell m}\tilde{\mathcal{A}}_{\ell-1m} + \mathcal{Q}_{\ell+1m}\tilde{\mathcal{A}}_{\ell+1m}) = 0$$

$$\mathcal{Q}_{\ell m} = \sqrt{\frac{\ell^2 - m^2}{4\ell^2 - 1}}$$

Symmetry of the equations

$$a_{\ell m} \to \mp a_{\ell - m}$$
, $p_{\ell m} \to \pm p_{\ell - m}$, $\tilde{a} \to -\tilde{a}$, $m \to -m$

Eigenfrequency

$$\omega = \omega_0 + \tilde{a}m\,\omega_1 + \mathcal{O}(\tilde{a}^2)$$

"Decoupled" equations:

$$\mathcal{A}_{\ell m} + \tilde{a}m\bar{\mathcal{A}}_{\ell m} = 0 \qquad \mathcal{P}_{\ell m} + \tilde{a}m\bar{\mathcal{P}}_{\ell m} = 0$$

Generic: any metric, any perturbation, any theory

Proca equation

$$\nabla_{\sigma}F^{\sigma\nu}-\mu^2A^{\nu}=0 \qquad \begin{array}{c} m=\hbar\mu/c\\ \text{Mass} \end{array}$$
 $\Longrightarrow \quad \nabla_{\sigma}A^{\sigma}=0 \ , \qquad \Box A^{\nu}-\mu^2A^{\nu}=0$

Massive hidden U(1) vector fields are quite generic features of

extensions of standard model

[Goodsel et al. 2009]
[Jaekel et al. 2010]
[Goldhaber and Nieto 2008]

- (apparently) nonseparable in a Kerr background
- Note that EM (massless) perturbations in Kerr-(A)dS are separable!

$$\nabla_{\sigma} F^{\sigma\nu} = 0 \quad \Longrightarrow \quad \Box A^{\nu} - \nabla^{\nu} (\nabla_{\sigma} A^{\sigma}) + \Lambda A^{\nu} = 0$$

- However → role of the gauge freedom → massless fields propage 2 DOF
- Proca eq. implies Lorenz condition → no more freedom → 3 DOF

[Pani et al., to appear]

- The Proca problem becomes tractable in the slow-rotation approximation
- Let us decompose the vector field in vector spherical harmonics:

$$Y_a^{\ell m} = \left(\partial_{\vartheta} Y^{\ell m}, \partial_{\varphi} Y^{\ell m}\right) \qquad S_a^{\ell m} = \left(\frac{1}{\sin \vartheta} \partial_{\varphi} Y^{\ell m}, -\sin \vartheta \partial_{\vartheta} Y^{\ell m}\right)$$

$$\delta A_{\mu}(t,r,\vartheta,\varphi) = \sum_{l,m} \begin{bmatrix} 0 \\ 0 \\ u_{(4)}^{\ell m}(t,r)S_a^{\ell m} \end{bmatrix} + \sum_{l,m} \begin{bmatrix} u_{(1)}^{\ell m}(t,r)Y^{\ell m} \\ u_{(2)}^{\ell m}(t,r)Y^{\ell m} \\ u_{(3)}^{\ell m}(t,r)Y_a^{\ell m} \end{bmatrix}$$

Axial parity

Polar parity

Proca equations can be written as

$$\delta\Pi_{t} \equiv (A_{\ell m}^{(0)} + \tilde{A}_{\ell m}^{(0)} \cos \vartheta) Y^{\ell m} + B_{\ell m}^{(0)} \sin \vartheta \partial_{\vartheta} Y^{\ell m} = 0$$

$$\delta\Pi_{r} \equiv (A_{\ell m}^{(1)} + \tilde{A}^{(1)\ell m} \cos \vartheta) Y^{\ell m} + B_{\ell m}^{(1)} \sin \vartheta \partial_{\vartheta} Y^{\ell m} = 0$$

$$\delta\Pi_{\vartheta} \equiv \alpha_{\ell m} \partial_{\vartheta} Y^{\ell m} - im\beta_{\ell m} \frac{Y^{\ell m}}{\sin \vartheta} + \eta_{\ell m} \sin \vartheta Y^{\ell m} = 0$$

$$\frac{\delta\Pi_{\varphi}}{\sin \vartheta} \equiv \beta_{\ell m} \partial_{\vartheta} Y^{\ell m} + im\alpha_{\ell m} \frac{Y^{\ell m}}{\sin \vartheta} + \zeta_{\ell m} \sin \vartheta Y^{\ell m} = 0$$

- Lorenz condition can be written in the same form as {t} or {r} components
- All coefficients can be divided in two sets:

$$A_{\ell m}^{(I)}, \quad lpha_{\ell m}, \quad \zeta_{\ell m} \qquad ilde{A}_{\ell m}^{(I)}, \quad B_{\ell m}^{(I)}, \quad eta_{\ell m}, \quad \eta_{\ell m}$$

Axial coefficients

Polar coefficients

• The angular part can be eliminated using the orthogonality properties of the spherical harmonics. E.g.:

$$\delta\Pi_t \equiv (A_{\ell m}^{(0)} + \tilde{A}_{\ell m}^{(0)}\cos\vartheta)Y^{\ell m} + B_{\ell m}^{(0)}\sin\vartheta\partial_\vartheta Y^{\ell m} = 0$$

We compute the following integral:

$$\int \delta \Pi_I Y^{*\ell m} d\Omega , \quad (I = t, r, L)$$

Useful properties of spherical harmonics:

$$\cos \vartheta Y^{\ell m} = \mathcal{Q}_{\ell+1m} Y^{\ell+1m} + \mathcal{Q}_{\ell m} Y^{\ell-1m}$$

$$\mathcal{Q}_{\ell m} = \sqrt{\frac{\ell^2 - m^2}{4\ell^2 - 1}}$$

$$\sin \vartheta \partial_{\vartheta} Y^{\ell m} = \mathcal{Q}_{\ell+1m} \ell Y^{\ell+1m} - \mathcal{Q}_{\ell m} (\ell+1) Y^{\ell-1m}$$

Radial equations:

$$A_{\ell m}^{(I)} + \mathcal{Q}_{\ell m} \left[\tilde{A}_{\ell-1m}^{(I)} + (\ell-1) B_{\ell-1m}^{(I)} \right] + \mathcal{Q}_{\ell+1m} \left[\tilde{A}_{\ell+1m}^{(I)} - (\ell+2) B_{\ell+1m}^{(I)} \right] = 0$$

$$\Lambda \alpha_{\ell m} - i m \zeta_{\ell m} - \mathcal{Q}_{\ell m} (\ell+1) \eta_{\ell-1m} + \mathcal{Q}_{\ell+1m} \ell \eta_{\ell+1m} = 0$$

$$\Lambda \beta_{\ell m} + i m \eta_{\ell m} - \mathcal{Q}_{\ell m} (\ell+1) \zeta_{\ell-1m} + \mathcal{Q}_{\ell+1m} \ell \zeta_{\ell+1m} = 0$$

Same form as the general equations:

$$\mathcal{A}_{\ell m} + \tilde{a}m\bar{\mathcal{A}}_{\ell m} + \tilde{a}(\mathcal{Q}_{\ell m}\tilde{\mathcal{P}}_{\ell-1m} + \mathcal{Q}_{\ell+1m}\tilde{\mathcal{P}}_{\ell+1m}) = 0$$

$$\mathcal{P}_{\ell m} + \tilde{a}m\bar{\mathcal{P}}_{\ell m} + \tilde{a}(\mathcal{Q}_{\ell m}\tilde{\mathcal{A}}_{\ell-1m} + \mathcal{Q}_{\ell+1m}\tilde{\mathcal{A}}_{\ell+1m}) = 0$$

Proca in SR Kerr. Field equations

Polar and axial sector are coupled:

$$\begin{split} \left(\hat{\mathcal{D}}_{2}u_{(2)}^{\ell} - \frac{2F}{r^{2}}\left(1 - \frac{3M}{r}\right)\left[u_{(2)}^{\ell} - u_{(3)}^{\ell}\right] = \\ &= \frac{2\tilde{a}M^{2}m}{\Lambda r^{5}\omega}\left[\Lambda\left(2r^{2}\omega^{2} + 3F^{2}\right)u_{(2)}^{\ell} + 3F\left(r\Lambda Fu_{(2)}^{\ell\ell} - \left(r^{2}\omega^{2} + \Lambda F\right)u_{(3)}^{\ell}\right) \right. \\ &\left. - \frac{6i\tilde{a}M^{2}F\omega}{\Lambda r^{3}}\left[(\ell+1)\mathcal{Q}_{\ell m}u_{(4)}^{\ell-1} - \ell\mathcal{Q}_{\ell+1m}u_{(4)}^{\ell+1}\right] \right. \\ \left.\hat{\mathcal{D}}_{2}u_{(3)}^{\ell} + \frac{2F\Lambda}{r^{2}}u_{(2)}^{\ell} = \frac{2\tilde{a}M^{2}m}{r^{5}\omega}\left[2r^{2}\omega^{2}u_{(3)}^{\ell} + 3rF^{2}u_{(3)}^{\ell\ell} - 3\left(\Lambda + r^{2}\mu^{2}\right)Fu_{(2)}^{\ell}\right] \right. \\ \left.\hat{\mathcal{D}}_{2}u_{(4)}^{\ell} - \frac{4\tilde{a}M^{2}m\omega}{r^{3}}u_{(4)}^{\ell} = -\frac{6i\tilde{a}M^{2}F}{r^{5}\omega}\left[(\ell+1)\mathcal{Q}_{\ell m}\psi^{\ell-1} - \ell\mathcal{Q}_{\ell+1m}\psi^{\ell+1}\right] \right. \end{split}$$

Where we have used the Lorenz condition and defined:

$$\hat{\mathcal{D}}_2 = \frac{d^2}{dr_*^2} + \omega^2 - F\left[\frac{\ell(\ell+1)}{r^2} + \mu^2\right] , \qquad \psi^{\ell} = \left(\Lambda + r^2\mu^2\right) u_{(2)}^{\ell} - (r - 2M) u_{(3)}^{\ell}$$

Proca in SR Kerr. Boundary conditions

Near-horizon behavior

$$u_{(i)} \sim e^{-ik_H r_*}$$

$$k_H = \sqrt{\omega \left(\omega - \frac{m\tilde{a}}{2M}\right)} \sim \omega - m\Omega_H \simeq \omega - \frac{m\tilde{a}}{2r_+}$$

Superradiance (?)

- Caution: in principle at first order the method works only if $~\omega M\gg ilde{a}$
- Behavior at infinity

$$u_{(i)} \sim B_{(i)} e^{-k_{\infty} r} r^{-\frac{M(\mu^2 - 2\omega^2)}{k_{\infty}}} + C_{(i)} e^{k_{\infty} r} r^{\frac{M(\mu^2 - 2\omega^2)}{k_{\infty}}} \qquad k_{\infty} = \sqrt{\mu^2 - \omega^2}$$

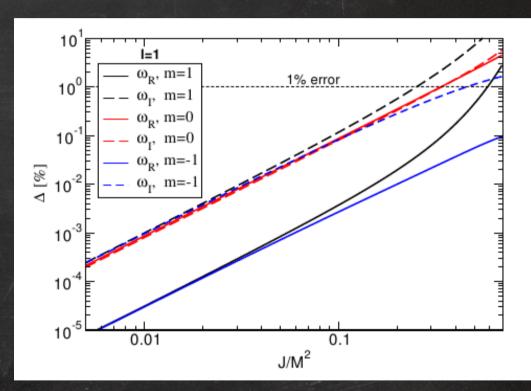
 $B=0 \rightarrow quasinormal modes$ (purely outgoing waves at infinity)

C=0 → bound states (exponential decay, spacially localized near the BH)

Proca in SR Kerr. Results

Numerical calculations in the slow rotation approximation are not any more complicated than in the nonrotating case-horizon behavior

- Standard techniques:
 - direct integration (bound states)
 - continued fractions (QNMs, BS)
 - **Breit-Wigner method (QNMs, BS)**



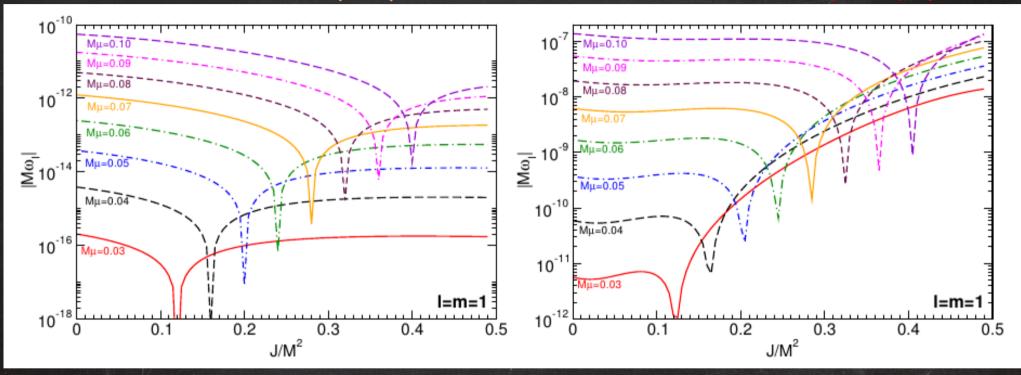
Test of the method: EM (massless) QNMs of Kerr

Good results even for moderately large spin

Proca in SR Kerr. Results

Axial modes (S=0)

Polar modes (S=+1,-1)



Small mass limit:

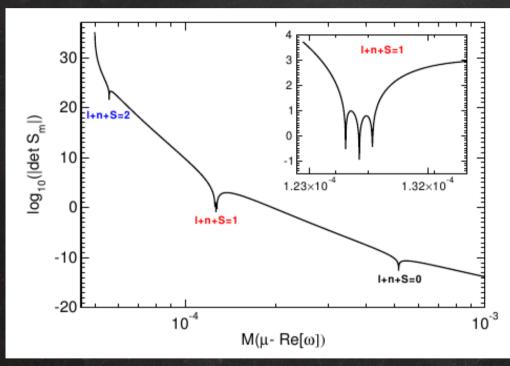
$$\omega_R \sim \mu - \frac{\mu(M\mu)^2}{2(\ell+n+S+1)}$$

$$M\omega_I \sim \gamma_{S\ell} \left(\tilde{a}m - 2r_+\mu\right) (M\mu)^{4\ell+5+2S}$$

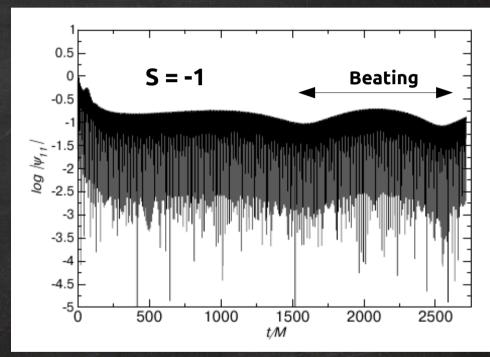
Proca in SR Kerr. Fully coupled system

$$\omega_R \sim \mu - \frac{\mu(M\mu)^2}{2(\ell+n+S+1)}$$

$$M\omega_I \sim \gamma_{S\ell} \left(\tilde{a}m - 2r_+\mu\right) (M\mu)^{4\ell+5+2S}$$



Breit-Wigner resonances



Confirmed by numerical simulations [Witek et al., work in progress]

Proca in SR Kerr. Analytical results

• In the axial case \rightarrow master equation (scalar \rightarrow s=0, axial vector \rightarrow s=1)

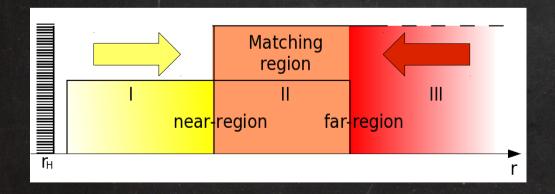
$$\frac{d^2\Psi}{dr_*^2} + \left[\omega^2 - \frac{2m\varpi(r)\omega}{r^2} - F\left(\frac{\Lambda}{r^2} + \mu^2 + (1-s^2)\left\{\frac{B'}{2r} + \frac{BF'}{2rF}\right\}\right)\right]\Psi = 0$$

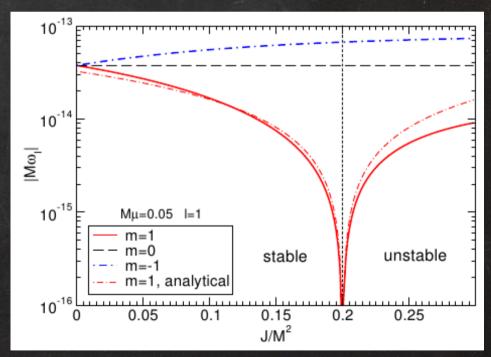
$$ds_0^2 = g_{\mu\nu}^{(0)} dx^{\mu} dx^{\nu} = -F(r)dt^2 + B(r)^{-1} dr^2 + r^2 d^2 \Omega - 2\varpi(r) \sin^2 \theta d\varphi dt$$

- Suitable for analytical methods
- Matching asymptotics

[Starobisky 1973]

[Detweiler 1980]





$$M\omega_I \sim \gamma_{s\ell} \left(\tilde{a}m - 2r_+\mu\right) (M\mu)^{4\ell+5}$$

Astrophysical consequences of the Proca instability

Proca instability

- Can we extrapolate these results to high rotation?
- Scalar case (l=1) $M\omega_I \sim rac{1}{48} \left(ilde{a} m 2 r_+ \mu
 ight) (M \mu)^9$

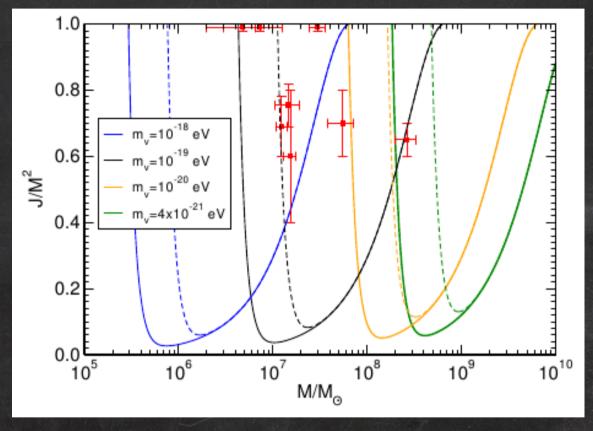
Maximum at
$$\begin{cases} a=M\\ M\mu^{\max}=0.45\\ M\omega_I^{\max}=1.6\times 10^{-6} \end{cases}$$
 Numerically
$$\begin{cases} a\sim M\\ M\mu^{\max}\sim 0.42\\ M\omega_I^{\max}=1.5\times 10^{-6} \end{cases}$$
 [Cardoso Yoshida 2005]
$$M\omega_I^{\max}=1.5\times 10^{-6}$$

- Extrapolation should provide an order of magnitude for the instability
- Proca case: $M\omega_I\sim\gamma_{S\ell}\left(ilde{a}m-2r_+\mu
 ight)(M\mu)^{4\ell+5+2S}$
- Stronger instability when S = -1 and l=1:

$$\tau_{\text{vector}} = \omega_I^{-1} \sim \frac{M(M\mu)^{-7}}{\gamma_{-11}(\tilde{a} - 2\mu r_+)}$$

Proca instability. Regge plane

Instability is effective roughly for any non-vanishing spin!

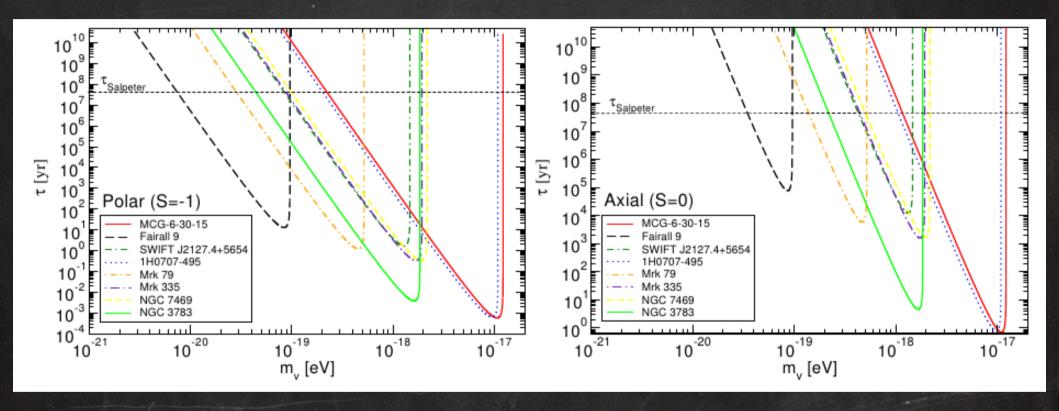


[Data taken from Brenneman et. al 2011]

- Current bound on the photon mass [from PDG] $ightarrow m_{\gamma} < 10^{-18} {
 m eV}$
- Depend very mildly on the fit coefficient and on the threshold
- τ_{Salpater} → timescale for accretion at the Eddington limit

Proca instability

Not strongly dependent on the timescale nor on type of mode



Part IV Further applications

[even more in preparation]

- Particularly advantageous:
 - Cauchy horizon, even horizons, ergosphere

$$r_{+} = 2M\left(1 - \frac{\tilde{a}^2}{4}\right)$$
 $r_{-} = \frac{M\tilde{a}^2}{2}$ $r_{\rm ER} = 2M\left(1 - \cos^2\vartheta\frac{\tilde{a}^2}{4}\right)$

- The superradiance regime is now consistent

$$\omega = \omega_0 + \tilde{a}m\omega_1 + \tilde{a}^2\omega_2 + \mathcal{O}(\tilde{a}^3)$$

- Caution: different expansion!
 - Spheroidal harmonics VS spherical harmonics

$$S_{\ell m} = Y_{\ell m} + \mathcal{O}(\tilde{a})$$

- Cannot recover Teukolsky → superposition of modes

[even more in preparation]

 $0 = \overline{\mathcal{A}_{\ell}}$

 $0 = \mathcal{P}_{\ell}$

Zeroth order

 \mathcal{P}_{L+3}

 \mathcal{A}_{L+2}

 \mathcal{P}_{L+1}

 \mathcal{A}_L

 \mathcal{P}_{L-1}

 \mathcal{A}_{L-2}

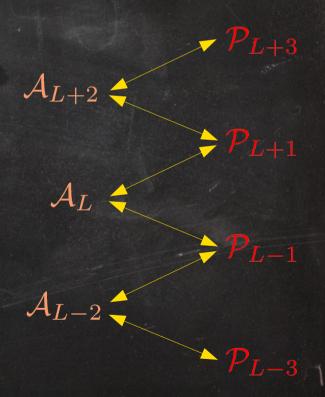
 \mathcal{P}_{L-3}

[even more in preparation]

$$0 = \mathcal{A}_{\ell}$$

$$+\tilde{a}m\bar{\mathcal{A}}_{\ell} + \tilde{a}(\mathcal{Q}_{\ell}\tilde{\mathcal{P}}_{\ell-1} + \mathcal{Q}_{\ell+1}\tilde{\mathcal{P}}_{\ell+1})$$

$$0 = \mathcal{P}_{\ell} + \tilde{a}m\bar{\mathcal{P}}_{\ell} + \tilde{a}(\mathcal{Q}_{\ell}\tilde{\mathcal{A}}_{\ell-1} + \mathcal{Q}_{\ell+1}\tilde{\mathcal{A}}_{\ell+1})$$



[even more in preparation]

$$0 = \mathcal{A}_{\ell}$$

$$+\tilde{a}m\bar{\mathcal{A}}_{\ell} + \tilde{a}(\mathcal{Q}_{\ell}\tilde{\mathcal{P}}_{\ell-1} + \mathcal{Q}_{\ell+1}\tilde{\mathcal{P}}_{\ell+1})$$

$$+\tilde{a}^{2} \left[\hat{\mathcal{A}}_{\ell} + \mathcal{Q}_{\ell-1}\mathcal{Q}_{\ell}\check{\mathcal{A}}_{\ell-2} + \mathcal{Q}_{\ell+2}\mathcal{Q}_{\ell+1}\check{\mathcal{A}}_{\ell+2}\right]$$

Zeroth order

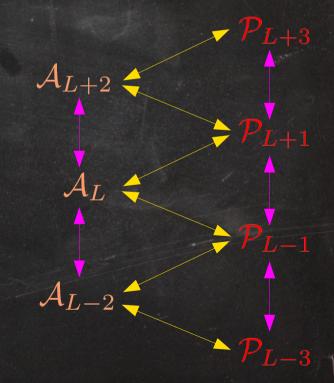
First order

Second order

$$0 = \mathcal{P}_{\ell}$$

$$+\tilde{a}m\vec{\mathcal{P}}_{\ell} + \tilde{a}(\mathcal{Q}_{\ell}\tilde{\mathcal{A}}_{\ell-1} + \mathcal{Q}_{\ell+1}\tilde{\mathcal{A}}_{\ell+1})$$

$$+\tilde{a}^{2}\left[\hat{\mathcal{P}}_{\ell} + \mathcal{Q}_{\ell-1}\mathcal{Q}_{\ell}\breve{\mathcal{P}}_{\ell-2} + \mathcal{Q}_{\ell+2}\dot{\mathcal{Q}}_{\ell+1}\breve{\mathcal{P}}_{\ell+2}\right]$$



Kerr-Newman BHs

WORK

- Most general rotating solution in GR
- Gravitational and EM perturbations are coupled → not separable?
- Apply the method to slowly-rotating Reissner-Nordstrom:

Kerr-Newman BHs

- Most general rotating solution in GR
- Gravitational and EM perturbations are coupled \rightarrow not separable?
- Apply the method to slowly-rotating Reissner-Nordstrom:
 - Axial sector: (isospectrality?)

$$\hat{\mathcal{D}}Z_i = V_0^{(i)}Z_i$$

Zeroth order (i=1,2)

$$\hat{D} = \frac{d^2}{dr_*^2} + \omega^2 - F \frac{\ell(\ell+1)}{r^2}$$

$$F(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$$

Kerr-Newman BHs

- Most general rotating solution in GR
- Gravitational and EM perturbations are coupled → not separable?

[Berti & Kokkotas 2004]

- Apply the method to slowly-rotating Reissner-Nordstrom:
 - Axial sector: (isospectrality?)

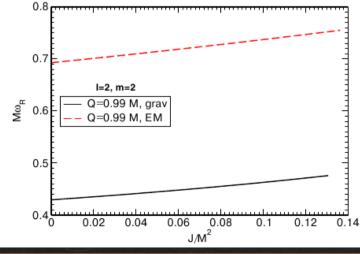
$$\hat{\mathcal{D}}Z_i = V_0^{(i)}Z_i + m\tilde{a}\left[V_1^{(i)}Z_i + V_2^{(i)}Z_i'\right] + m\tilde{a}Q^2\left[W_1^{(i)}Z_j + W_2^{(i)}Z_j'\right]$$

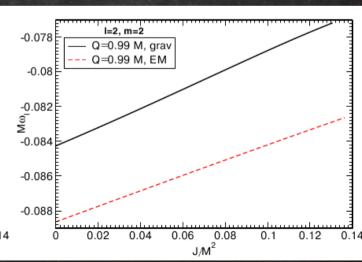
Zeroth order (i=1,2)

First order: coupling between i and j)

$$\hat{D} = \frac{d^2}{dr_*^2} + \omega^2 - F \frac{\ell(\ell+1)}{r^2}$$

$$F(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$$





Conclusion & Extensions

- Linear pertubations of BHs are important in a variety of situations
 - Stability, GWs, synergy with numerical simulations
- Perturbation theory of rotating solutions is challenging
- Slowly-rotating approximation: general method
 - Superradiance, BHs in alternative theories
- #1 Application: Proca perturbations of Kerr BHs in GR
 - Stronger instability than for scalars, bounds on the photon mass, Hidden U(1) sector
- #2 Application: gravito-EM pertubations of Kerr-Newman BHs in GR
- Second order formalism
- BHs in alternative theories (Chern-Simons, Gauss-Bonnet)

[Yunes & Pretorius 2009] [Pani et al. 2011]

Higher dimensions

 $T_{\mu\nu}^{\text{he}}G_{\mu\nu}^{\text{ravity}}R_{\mu\nu}^{\text{oom}}$

thegravityroom.blogspot.com

Calls for bloggers are now open!

Thanks!

Backup slides

"Nothing is More Necessary than the Unnecessary"

Curiosity: similar bounds for the graviton? → probably not! (S= -2, l=2)

 $M\omega_I \sim \gamma_{S\ell} \left(\tilde{a}m - 2r_+\mu\right) (M\mu)^{4\ell+5+2S}$

Proca in SR Kerr. Field equations

In Proca theory, the monopole (l=0,m=0) is dynamical:

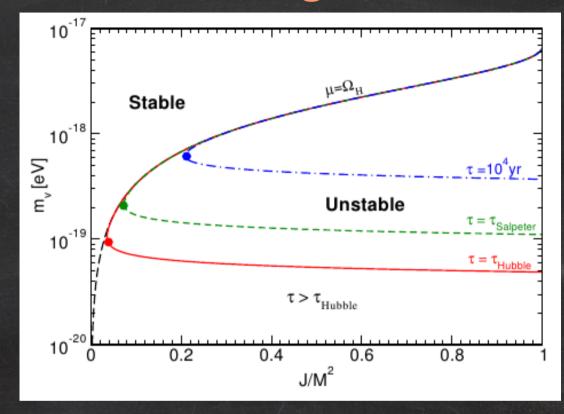
$$\left[\frac{d^2}{dr_*^2} + \omega^2 - F\left(\frac{2(r-3M)}{r^3} + \mu^2\right)\right] u_{(2)}^{00} = \underbrace{\frac{2i\sqrt{3}\tilde{a}M^2\omega F}{r^3}u_{(4)}^{10}}_{\text{Propensity rule }(\mathcal{Q}_{00} = 0)$$

m=0 → no corrections at first order! Same modes as in Schwarzschild

[Rosa & Dolan 2011]

- Modes can be labelled by the total angular momentum → j=l+S
 - Axial → S=0
 - Polar → S=+1, S=-1
 - Monopole → S=+1

Proca instability



$$m_v^{(c)} = \hbar \mu^{(c)} \sim \frac{7.055 \times 10^{-20}}{\gamma_{-11}^{1/7}} \left[\frac{10^7 M_{\odot}}{M} \right]^{6/7} \text{eV}$$

- · Depend very mildly on the fit coefficient and on the threshold
- $\tau_{\text{Salpater}} \rightarrow \text{timescale for accretion at the Eddington limit}$

 $\mathcal{O}(
u^2)$ AAAAAA