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Outline
● Motivation: the reach of perturbation theory

● Black hole perturbation theory in a nutshell

● Open problems

● Kojima's method for slowly-rotating stars

● Proca fields on a Kerr background

– Equations

– Superradiant instabilities

– Astrophysical implications

● Extensions

– Second order

– QNMs of Kerr-Newman BHs

“Black holes teach us that space can be crumpled 
like a piece of paper into an infinitesimal dot, that 
time can be extinguished like a blown-out flame, 
and that the laws of physics that we regard as 
'sacred', as immutable, are anything but”.

John Archibald Wheeler's 
Autobiography, 1998
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Motivation

● Perturbation theory is ubiquitous in physics:

– Epicycles in Ptolemaic astronomy

– Stark and Zeeman effects

– Feynman diagrams

● Particularly useful in GR:

– BH and stellar perturbations

– gravitational waves, cosmology, PN theory, ...

● PDEs  ODEs→

● The reach of  PT is given by its ability in simplifying the problem

“Hearing” the spacetime shape
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Approx. methods VS Hard numerics

● Approximate doesn't mean worst!

● Complementary approach

● Synergy between semianalytical 

and fully numerical methodsPT

NR

PN

MergerInspiral Ringdown

Adapted from Thorne

Realistic situations

Numerics  Physics→

Supercomputers

Idealized situations

Physical insights

“Easy” to perform

Approximate 
methods

Numerical
methods
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Part I

BH perturbations
in a nutshell
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[Kokkotas & 

Schmidt 1998]

[Berti et al. 2009]

[Konoplya & 

Zhidenko  2011]

2) Insert into Einstein eqs: 10 linearized coupled eqs (Mathematica helps!)

3) Fields redefinition and new “tortoise” coordinates: system of linear equations:

4) Solved with suitable boundary conditions (quasinormal modes, instabilities)

5) Any spherically symmetric background, any theory, any field

1) Regge-Wheeler formalism: AxialPolar

background perturbations
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BH perturbations. Symmetries matter

● In spherically symmetry the field eqs. can be always separated

● If the background is rotating, separability is not guaranteed!

● Teukolsky formalism

– Newman-Penrose tetrad formalism

– Weyl scalars

– Separability in Kerr  is almost a miracle! (Petrov Type D)

● Perturbations of generic rotating BHs are important:

– Astrophysical BHs are spinning

– Stability (e.g. superradiance, r-modes in stars, no-hair theorem)

[Teukolsky ~ 1973]

[Teukolsky and Press]

[Chandra's book]
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Non-separable (?) problems
● Four dimensions

– Massive vector (Proca) fields on a Kerr background

– Gravito-EM perturbations of Kerr-Newman BHs

– Rotating objects in alternative theories 

● Higher dimensions

– Myers-Perry BHs with generic spins

– Rotating solutions

● Stability, greybody factors, quasinormal modes?
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Superradiance and BH bomb
● Amplified scattering of waves

● Requires dissipation  needs an event horizon→

[Press and Teukolsky '70]

Zel'dovich effect. [Credit: Ana Sousa]

[Thorne, Price, Macdonald's book]

● Waves scattered off a Kerr BH are 

amplified if

● Reflecting boundaries  BH bomb!→

● “Nature may provide its own mirrors”

● AdS boundaries 

● Massive fields

[Cardoso & Dias, 2004]

Massive scalar perturbations 

around Schwarzschild BHs

[Richartz et al. 2008]

[Cardoso & Pani, 2012]
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Massive fields & superradiance
● Massive fields around spinning BHs are unstable

● Instability is well-studied in the scalar case

– Strongest instability when μM ~1

– Astrophysically relevant only for

● Primordial BHs (1014 - 1023 kg) and SM particles

● Ultra-light particles (m ~ 10-21 - 10-9 eV) and massive BHs

– Axiverse scenario ( QCD axions, Peccei-Quinn mechanism, etc...)

– Bosenova (numerical simulations are challenging)

● The massive spin-1 case is still uncharted territory... (stronger instability?)

● Rosa and Dolan (2011) studied the non-rotating case

[Damour et al. 1976]

[Detweiler, 1980]

[Earley & Zouros]

[Cardoso & Yoshida 2005]

[Dolan 2007]

[Arvanitaki et al. 2010-2011]

[Kodama & Yoshino 2011-2012]
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Part II

Perturbations of 
slowly-rotating BHs
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Method. Perturbations of slowly rotating spacetimes

● Slowly-rotating background metric: 
[Kojima 1992, 1993, 1997]

● Zeeman splitting

● Laporte-like selection rule

● Propensity rule

● Expand any equation (scalar, vector, tensor...) in spherical harmonics 

● For any metric, any theory and any perturbations: system of radial ODEs:

Linear combinations of axial 

and polar perturbations

[Pani et al., to appear]
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● Symmetry of the equations

● At first order in the rotation, the couplings can be neglected: 

● Eigenfrequency

● “Decoupled” equations:

Method. Perturbations of slowly rotating BHs

● Generic: any metric, any perturbation, any theory
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Proca equation

● (apparently) nonseparable in a Kerr background

● Note that EM (massless) perturbations in Kerr-(A)dS are separable!

[Goodsel et al. 2009]

Mass

● Massive hidden U(1) vector fields are quite generic features of 

extensions of standard model [Jaekel et al. 2010]

[Goldhaber and Nieto 2008]

● However  role of the → gauge freedom  massless fields propage → 2 DOF

● Proca eq. implies Lorenz condition  no more freedom  → → 3 DOF
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Proca in slowly-rotating Kerr

● The Proca problem becomes tractable in the slow-rotation approximation

● Let us decompose the vector field in vector spherical harmonics:

[Pani et al., to appear]

Axial parity Polar parity
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Proca in slowly-rotating Kerr

● Lorenz condition can be written in the same form as {t} or {r} components

● All coefficients can be divided in two sets:

● Proca equations can be written as

Axial coefficients Polar coefficients
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● The angular part can be eliminated using the orthogonality properties of 

the spherical harmonics. E.g. :  

Proca in slowly-rotating Kerr

● We compute the following integral:

● Useful properties of spherical harmonics:
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Proca in slowly-rotating Kerr
● Radial equations:

● Same form as the general equations:
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Proca in SR Kerr. Field equations

● Polar and axial sector are coupled:

● Where we have used the Lorenz condition and defined:
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Proca in SR Kerr. Boundary conditions

● Near-horizon behavior

● Caution: in principle  at first order the method works only if  

Superradiance (?)

● Behavior at infinity

B=0  quasinormal modes→  (purely outgoing waves at infinity)

C=0  bound states→  (exponential decay, spacially localized near the BH)
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Proca in SR Kerr. Results

Numerical calculations in the slow rotation approximation are 

not any more complicated than in the nonrotating case-horizon behavior

● Standard techniques: 

– direct integration (bound states)

– continued fractions (QNMs, BS)

– Breit-Wigner method (QNMs, BS)

Test of the method: EM (massless) QNMs of Kerr

● Good results even for moderately large spin
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Proca in SR Kerr. Results

Axial modes (S=0) Polar modes (S=+1,-1)

● Small mass limit:
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Proca in SR Kerr. Fully coupled system

Breit-Wigner resonances Confirmed by numerical simulations 

[Witek et al., work in progress]

BeatingS = -1
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Proca in SR Kerr. Analytical results

● In the axial case  → master equation (scalar  → s=0 , axial vector  → s=1)

[Starobisky 1973]

[Detweiler 1980]

● Suitable for analytical methods

● Matching asymptotics
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Part III

Astrophysical 
consequences of the 

Proca instability
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Proca instability
● Can we extrapolate these results to high rotation?

● Scalar case (l=1)

Maximum at Numerically

[Cardoso Yoshida 2005]

[Dolan 2007]

● Extrapolation should provide an order of magnitude for the instability

● Proca case:

● Stronger instability when S = -1 and l=1:
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Proca instability. Regge plane

● Instability is effective roughly for any non-vanishing spin!

[Data taken from

 Brenneman et. al 2011]

● Current bound on the photon mass [from PDG]  →

● Depend very  mildly on the fit coefficient and on the threshold

● τ
Salpater 

 timescale for accretion at the Eddington limit→
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Proca instability
● Not strongly dependent on the timescale nor on type of mode
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Part IV

Further applications
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Second order [even more in preparation]

● Particularly  advantageous:

– Cauchy horizon, even horizons, ergosphere

– The superradiance regime is now consistent

● Caution: different expansion!

– Spheroidal harmonics VS spherical harmonics

– Cannot recover Teukolsky  → superposition of modes
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Second order [even more in preparation]

Zeroth order
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Second order [even more in preparation]

Zeroth order

First order
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Second order [even more in preparation]

Zeroth order

First order

Second order
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Kerr-Newman BHs
● Most general rotating solution in GR

● Gravitational and EM perturbations are coupled  not separable?→

● Apply the method to slowly-rotating Reissner-Nordstrom:
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Kerr-Newman BHs
● Most general rotating solution in GR

● Gravitational and EM perturbations are coupled  not separable?→

● Apply the method to slowly-rotating Reissner-Nordstrom:

– Axial sector: (isospectrality?)

Zeroth order (i=1,2)
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Kerr-Newman BHs
● Most general rotating solution in GR

● Gravitational and EM perturbations are coupled  not separable?→

● Apply the method to slowly-rotating Reissner-Nordstrom:

– Axial sector: (isospectrality?)

First order: coupliing between i and j)

[Berti & Kokkotas 2004]

Zeroth order (i=1,2)
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Conclusion & Extensions
● Linear pertubations of BHs are important in a variety of situations

– Stability, GWs, synergy with numerical simulations

● Perturbation theory of rotating solutions is challenging

● Slowly-rotating approximation: general method

– Superradiance, BHs in alternative theories 

● #1 Application: Proca perturbations of Kerr BHs in GR

– Stronger instability than for scalars,  bounds on the photon mass, Hidden U(1) sector

● #2 Application: gravito-EM pertubations of Kerr-Newman BHs in GR

● Second order formalism

● BHs in alternative theories (Chern-Simons, Gauss-Bonnet)

● Higher dimensions

[Yunes & Pretorius 2009]

[Pani et al. 2011]
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Thanks!

thegravityroom.blogspot.com

Calls for bloggers are now open!
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Backup slides
“Nothing is More Necessary 

than the Unnecessary”



● Curiosity: similar bounds for the graviton?  probably not! (S= -2, l=2)→



● In Proca theory, the monopole (l=0,m=0) is dynamical: 

Proca in SR Kerr. Field equations

Propensity rule

● m=0  → no corrections at first order! Same modes as in Schwarzschild

● Modes can be labelled by the total angular momentum   j=l+S→

– Axial  S=0→

– Polar  S=+1 , S= -1→

– Monopole  S=+1 →

[Rosa & Dolan 2011]



Proca instability

● Depend very  mildly on the fit coefficient and on the threshold

● τ
Salpater 

 timescale for accretion at the Eddington limit→
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