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Yesterday we have seen:

m How to formulate the exact initial value problem for shock
wave collision spacetime.

m A perturbative approximation, valid close to the axis at late
times, which is a tower of wave equations with sources.
m Reduced the problem to computation of scalar functions
Flgnn)(u’ v, P) = Fr(nrjgurf + FI(T:)VOI
and focused on the surface integrals

m Discussed numerical strategy to compute integration
domain.
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Integrand contains several pieces to be computed with care:

D odd contains a potentially problematic scaling.
Example where asymptotic expansions can be useful!
(see Mathematica example 2.2)




Sensitive features of the integrand /5" (x,)

Integrand contains several pieces to be computed with care:

Singularities @ x, = s = +1, due to
1 _ 1
VE(I=x2) /(0 —x)(ExET)
m Adapted change of variable y = y*°** — kw? & split domains.
m Writing expressions & using series in problematic regions.

(see Mathematica example 2.3)
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Visualisation of the radiation signal D = 4

Play Video
m Signal follows optical rays & geometrical suppression.

m Growth at axis (shorter §7) & far away (pert. breakdown).



Visualisation of the radiation signal D = 5

Play Video
Suppressed tail in D-odd after second optical ray.



Reduced Wave forms
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Radiation extraction

m Bondi formula vs Pseudo-tensor & extraction
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Approximations

D’Eath & Payne have argued that if:

D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694

m One assumes analyticity (x = cos# & using Z, symm.)

_ 2 dE_NRoe g
C(X):Eon(_nz_:OC”(X —1)

m Then C, gets contributions from perturbations of order < n.

s 400 Cn(—2)"n!
= Inelasticity €radiaca = -0 ("2(n+1))u

Series converges if liMp_ 400 |Cni1/Cnl < 1.

m Example:
D = 4 we know Cy ~ 0.250 & Cy —2C;/3 =0.163

— Cy/Cy ~ 0.52

Thus: 15! order < isotropic approximation, n =0
2"9order < first angular correction, n = 1
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Radiation extraction (Landau-Lifshitz pseudo-tensor)

m Radiative components h; = d;H(u, v, p) + Aji(x)E(u, v, p)
m Atfirst order (i = 1) only E(u, v, p)

m In our first paper — Landau-Lifshitz pseudo-tensor
Yoshino and Shibata, arXiv:0907.2760

_ dEnergy
Eradlated - / dt /S - det
Qp_3 r2 ,D—4 if
~ lim /h dt>
327 Gp §-50,r—00 ( Piv

Eradiated 1D-2 < / D-4 2 >
_— = lim rp 2z E,)dt
Ecm 8D — 35000 (77 v)
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Tanabe, Kinoshita and Shiromizu,1104.0303

M 7’= + d7ﬁ T = , . . PON
B( )< dMp x — o2 b%]b[”“

------------

U aied M+ B

de Donder coordinates — Bondi coordinates:

. 11 o
ds? = gz»d?2 + 2g,;d7d? + 2g,.dx!d? + 72 [wm + r;’% + .. } dx’dx”

m Conditions: g;; = g;; = 0 & F areal radius

m Use de Donder gauge conditions: 77“5 =0

dMs (D—2)(D—-3)Qp_3 R INE
= = lim E+H
~ didcosd 327 Gp M?—-+oo [ P ( * )}




Extracting the inelasticity @ 1st order

e(r) D=4 e(r) D=5
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A remarkably simple fit formula

AH bound & First order estimate
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A remarkably simple fit formula

AH bound & First order estimate
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Higher orders and two dimensional reduction
m The Volume terms
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Volume terms & domain conditions

FO, = —20pt, / du/ / [ avayy 224 S0 v/, ) 1B0(x)
Vol

2(27rp

y=(uv,X)
PPtp?—2(u—u)(v—v')
= <
X = 2pp =1
(120 in handout).

This requires:

m Evaluating ~ 10 surface terms in S
m Triple integration

m Finding a complicated implicit integration domain in 2D
(Also need to impose above blue surface)

o
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Source functions

Most important sources are in jj radiative components:

Tl_§1) = T(1)(U> v, p)(s,/ + 8(1)(U, v, P)AI/

and after a lengthy calculation (see lecture notes)
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Source functions

Most important sources are in jj radiative components:

and after a lengthy calculation (see lecture notes)

T = —515(B1)?~ 282 [P53BE, + B,Ey + BE | -2(D-3)EuE v+

4(D-3 2_ _
+(D-3) [ (pz 'E? + s (En)’ — Pz, EE, — %EEPP}

and

S = AEw+p's [(B1)? —~ 22BE, +2(D — 3)B,E, — 2BE 1] +

p

4(D-3 2(D—3)? 2(D-3 —
+40 0 g2 20N EE ,— 202 EE ), +(D—4) [2EuE - 5855 (E )]

= Some simplification is in order for feasibility!



Higher orders and two dimensional reduction

m Two dimensional form
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2D reduction & CL symmetry

D’Eath & Payne found conformal symmetry (valid in D > 4)
For one shock it consists of a one-parameter symmetry:

m Boost: Scales up energy parameter E — E' = e’E
preserving transverse coordinates.

m + Conformal scaling: as to bring E’ back to E.

This also holds for system of shocks order by order.

Thus:
m One finds D — 1 invariant coordinates {p, q, ¢;}

m All p dependence scales out!
m = Problem becomes 1+1 in {p, g} order by order
(Recall p = (V2v — &(p))pP~*and g = ~52)
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Integral solutions in 2D form

More specifically, the symmetry implies:

hD(p, G, é1,p) = p~ (P CHNANI D (p q, ) .

And so the previous solutions acquire the form

D —4
fr(n,?\)S‘urf(pa C]) = nl((21 QD 4 (xe / dyf +nlr?7,n(x*)
surf
and
) B
v (P G) = S35 / / dq'do'a "D (p', ¢) G (p,q. 0. q)
with

_ )D-HQD_4

(—1
D—-2
@z Jo

surf

b=4_2n(D- 3)/D o( X)

G (p,q,0,q) = dyy 2

y = 1+y2—x/é(q—q’yD*Z)y(p—p’y*D*‘”—w(}/))S 1

= C_(y) <0 (Note: Whenp’ = ¢ =0, C_(y) — C_(y))
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Higher orders and two dimensional reduction

m The 2D Green’s functions



Characteristics & Past light cone visualisation
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Domain conditions & generalised domain search

In 2D form the domain condition (defining light-cone) is a more
complicated polynomial. The procedure becomes:

m Construct a chain of derivatives Cék) ~ %}y), k=0,...,3

m Find root of Cgs) and use that to find possible root
configuration for ng).

m Proceed iteratively down to Cs.

To perform the source (double) integral in the 2D plane, need
generalised domain search = 2D bracketing strategy.



Final Summary

Collisions of AS shock waves = interesting to study:

The results so far:



Final Summary

Collisions of AS shock waves = interesting to study:
m [nelasticity of BH formation in transplanckian collisions.

m Perturbative techniques in the context of strong gravity.

m Numerical strategies to solve higher dimensional integrals
in non-trivial domains.

The results so far:



Final Summary

Collisions of AS shock waves = interesting to study:
m [nelasticity of BH formation in transplanckian collisions.

m Perturbative techniques in the context of strong gravity.

m Numerical strategies to solve higher dimensional integrals
in non-trivial domains.

The results so far:
m Show consistency with the apparent horizon bound.

m A puzzling simplicity in first order perturbation theory.



Final Summary

Collisions of AS shock waves = interesting to study:
m [nelasticity of BH formation in transplanckian collisions.

m Perturbative techniques in the context of strong gravity.

m Numerical strategies to solve higher dimensional integrals
in non-trivial domains.

The results so far:
m Show consistency with the apparent horizon bound.

m A puzzling simplicity in first order perturbation theory.

Thanks for your attention!
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