
Radiation from a D-dimensional collision
of shock waves: numerical methods

Marco Sampaio
msampaio@ua.pt

Aveiro University & I3N

March 13th, 2013
nr/hep2 - IST



Acknowledgments

Collaborators

Flávio Coelho, Carlos Herdeiro & Carmen Rebelo
JHEP07(2011)121

PRL 108 (2012) 181102

arXiv:1206.5839

Funding & Institutions

gravitation.web.ua.pt

nr/hep2 organizers



Motivation I – The Transplanckian Problem

1 Large extra dimensions (ADD) address hierarchy problem
Transplanckian scattering @ ∼ 1TeV⇒ BHs @ LHC

� SM effective theory
on a thin brane

hep-th/9803315 (ADD)
R

Our 4D spacetime brane

Extra dimensions

PP

PP

proton remnant

initial state radiation

hard process

secondary decays
parton showers

hadronisation

v/c > 0.999 @ LHC

CMS arXiv:1012.3357

ATLAS-CONF-2011-065

CHARYBDIS2
rough model Gr. Rad.

Frost, MS, Gaunt et. al. 0904.0979

2 Numerical GR, BH collisions difficult for large boost.
U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738
M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 + etc . . .

3 Shock wave collisions in D ≥ 4:

In D = 4, ε(1)
rad ' 0.25, & ε

(2)
rad ' 0.163 (within Num. GR err)

D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694
see also East and Pretorius, arXiv:1210.0443

In D ≥ 4, ε(1)
rad =?, ε(2)

rad =?
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Motivation II – Numerics vs Analytics

This problem is also technically very rich

1 Analytically:
Allows a consistent setup of an evolution problem with well
defined initial conditions,
An approximate integral solution can be obtained using
perturbation theory,
Requires the discussion of a general radiation extraction
formula in axially symmetric spacetimes at null infinity.

2 Numerically it requires:
The integration of many non-trivial integral solutions using
Green functions,
The discussion of strategies to compute non-trivial
integration domains,
The treatment of singularities, and other numerical issues
through series expansions & recurrence relations.

⇒ Excelent ground to illustrate many techniques, within a well
defined and interesting problem.
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Plan for Today

1 AS Gravitational Shock Waves
Physical properties & Ray Optics
Superposition & causal structure
Perturbative Setup & Solutions

2 Numerical Strategies – Surface Integrals
Breaking down the problem
Numerical domain search
Dealing with the Integrand

Tomorrow: Radiation extraction, Sources & Results.
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The Aichelburg-Sexl ultraboost

Schwarzschild metric→ field of source µ ∝ GDM at rest.

ds2 = −
(
1− µ

rD−3

)
dt2 +

(
1− µ

rD−3

)−1 dr2 + r2dΩ2
D−2

Boost along z
-

β → c = 1, M → 0, E fixed
-

ds2 = − dudv + dρ2 + ρ2dΩ2
D−3 + κΦ(ρ)δ(u)du2

Flat region II z-axis Flat region I

(u, v) = (t − z, t + z)
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Basic properties of a single shock wave I

Solution of Einstein’s equations, point source Pµ = E nµ

Tµν = Eδ(u)δ(D−2)(x i)nµnν , nµnµ = 0 , κ = 8πGD
ΩD−3

E

The shock profile is Φ(ρ) =

{ 2
(D−4)ρD−4 , D > 4

−2 ln(ρ) , D = 4

.

z axis -
D = 5Φ(ρ)

xi
630-3-6

12

9

6

3

0

z axis -
D = 4Φ(ρ)

xi
630-3-6

6

3

0

−3

−6
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Basic properties of a single shock wave II

Symmetries:

Axial symmetry (φi rotations on dΩD−3)
Advanced null translations v → v + const .

⇒ Metric of one shock wave effectively 2D (u, ρ)

Boosts along +z, with velocity β ≡ tanhα, up to a scalling

E → E ′ = eαE (⇔ κ→ ν = eαE)

Geometrical optics:

Riemann tensor singular on the shock plane

Null rays & tangent vectors discontinuous across shock
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Null rays scattering through shock wave D = 5

Play Video 1 Play Video 2

Null rays more delayed if aimed closer to center
Also more bent inwards, (even backwards) closer to center
Envelope of outermost null rays defines causal boundary
& becomes original null plane of rays @ late times
Envelope of innermost rays defines a sphere @ late times



Null rays scattering through shock wave D = 4

Play Video 1 Play Video 2
Same as before except that:

Rays far from center advance instead of delaying
(coordinate effect since jump ∝ Φ(ρ)).
But deflection/convergence of rays produces same effects
(physical effect since ∝ dΦ

dρ )



Outline

1 AS Gravitational Shock Waves
Physical properties & Ray Optics
Superposition & causal structure
Perturbative Setup & Solutions

2 Numerical Strategies – Surface Integrals
Breaking down the problem
Numerical domain search
Dealing with the Integrand



Superposition of two shock waves in CM

Consider oppositely moving shocks
⇒ same line element with u ↔ v ! - �

Superimposing 2 shocks we know:
1 They move @ speed of light
⇒ Cannot influence each other before collision
⇒ Metric before collision is sum of two shock metrics

2 How null generators of a shock scatter through other shock
⇒ Defines causal structure, i.e. regions causally
disconnected to collision (see next slide).

3 There is an apparent horizon already before the collision
⇒ Black hole must form & Bound on inelasticity is AH bound

D

1211109876543

0.4

0.3

0.2

AH bound

D

1211109876543

0.4

0.3

0.2

D. M. Eardley and S. B. Giddings, gr-qc/0201034

εradiated ≤ 1− 1
2

(
D−2

2
ΩD−2
ΩD−3

) 1
D−2
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Causal structure D = 5

When summing metrics before collision:
Easier to interpret metric in coordinates (u, v , ρ) adapted to
one shock wave (e.g. right moving u = 0), since flat.

ds2 = ds2
u,flat + ds2

v ,scatter , where ds2
v ,scatter is flat, at points

further away from center than envelope of 1st null rays.

Play Video

XXXzz

t
6
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Causal structure D = 4

Similar diagrams except that:
Profile function limρ→+∞Φ(ρ) = −∞.
Rays with ρ > κ⇒ step forward in time.

Play Video 1 Play Video 2

Note (all D): backscattered rays ( ρincident
κ1/(D−3) < 1) inside AH⇒ Trapped!
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Exact initial conditions in Brinkmann coordinates

In these (asymmetric) coordinates adapted to shock u = 0:

1 On u = 0+:

gµν(v , xi) = ηµν + κh(1)
µν + κ2h(2)

µν

2 Metric on other surface
determined by initial conditions,
since causally connected
only to points on the collision
line @ u = 0.
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u = 0+

region IV

⇒Well defined evolution problem into (future) region IV,
given EXACT initial conditions.
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Two roads to a perturbative construction - Road II

Exact initial data on u = 0:
Looks like series expansion in κ around Minkowski:

gµν(v , xi) = ηµν + κh(1)
µν + κ2h(2)

µν

In fact κih(i)
µν ∝ [κh(v , ρ)]i → [h(v , ρ)]i , in units κ = 1.

In regions of the (v , ρ) plane where h(v , ρ)� 1 (v � g(ρ)):
⇒ Initial data, 1st and 2nd order perturbation of Minkowski!

Condition verified well for rays of large ρincident > 1.
⇒ Maps to points close to axis in curved future region IV.
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Two roads to a perturbative construction - Road I

D’Eath and Payne’s Physical picture:

1 Perform a large boost along z with velocity β ≡ tanhα

2 Energy of u = 0 shock κ→ ν = eακ, blue-shifted.

3 Energy of v = 0 shock κ→ λ = e−ακ, red-shifted.

Then:
Exact boundary conditions on u = 0+ (strong shock ν)

gµν = ν
2

D−3

[
ηµν +

λ

ν
h(1)
µν +

(
λ

ν

)2

h(2)
µν

]
,

Perturbative parameter λ
ν = e−2α � 1 if α large.

⇒Weak shock (v = 0) small perturbation of flat space-time.
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Two roads to a perturbative construction - Road I

In Boosted frame
⇒ Smaller ρincident allowed.
⇒ Perturbative region wider (expands away from the axis).

Boost emphasizes validity of approximation close to the axis.
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Perturbative expansion

In the perturbative region (close to rays originating from
perturbative initial conditions):

Assume perturbative ansatz

gµν(u > 0, v , xi) = ηµν +
∞∑

n=1

κnh(n)
µν

Fix gauge order by order (de Donder condition h̄αβ,β = 0)

xµ → xNµ = xµ +
∞∑

n=1

κnξ(n)µ

Obtain decoupled tower of wave equations with source

�h(n)N
µν = T (n−1)

µν

[
h(k<n)
αβ

]
.

Note: The source is zero for i = 1!
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Causal structure of the background & formal solution

u

(0, v ′, ~x ′)
~x

v

y ≡ (u, v , ~x)

u = 0

h(n)N
µν (y) =

∫
u′>0

dDy ′G(y , y ′)
[
T (n−1)
µν (y ′) + 2δ(u′)∂v ′h(n)N

µν (y ′)
]



Summary of perturbative solutions I

Axial symmetry allows to expand all metric elements using

Γi ≡
xi

ρ
, δij , ∆ij ≡ δij − (D − 2)ΓiΓj ,

Then (A(u, v , ρ),B(u, v , ρ), . . .):

huu ≡ A = A(1) + A(2) + . . . hui ≡ B Γi = (B(1) + B(2) + . . .)Γi

huv ≡ C = 0 + C(2) + . . . hvi ≡ F Γi = (0 + F (2) + . . .)Γi

hvv ≡ G = 0 + G(2) + . . .

hij ≡ E ∆ij + H δij = (E (1) + E (2) + . . .)∆ij + (0 + H(2) + . . .)δij

Similar decomposition for the source T (i−1)
µν . Also denote:

Generic metric function by F (n)
m (u, v , ρ)1.

Its source by S(n−1)
F (u, v , ρ).

Note F (n)
m (0, v , ρ) = f (ρ) [h(v , ρ)]n , n = 1,2.

1m = 0, 1, 2 is the rank of the transverse space-tensor.
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Summary of perturbative solutions II

Then the integral solution is:

F (n)
m (u, v , ρ) = F (n)

m,Surf + F (n)
m,Vol

with

F (n)
m,Surf = −n!(−1)DΩD−4

(2πρ)
D−2

2

(√
2ρ
u

)n
∫
DSurf

dρ′f (ρ′)ρ′
D−4

2 +nID,n
m (x?)

and

F (n)
m,Vol =

−ΩD−4

2(2πρ)
D−2

2

∫ u

0
du′
∫∫
DVol

dv ′dρ′ρ′
D−4

2 S(n−1)
F (u′, v ′, ρ′)ID,0

m (x)

x = ρ2+ρ′2−2(u−u′)(v−v ′)
2ρρ′ ≤ 1

x? = x |@ collision line

(ID,n
m in handout).
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Physical interpretation of the solutions

A very clear physical picture to this tower of solutions is:

1 At 1st order, there is an impulsive creation of a
configuration of radiation on u = 0+ in the initial conditions.
This propagates freely on the flat background.

2 The 2nd order h(2)
µν propagates on a flat background, and

another signal of radiation is generated by the source of
h(1)
µν . This must encode backscattering.

3 Higher order perturbations h(i>2)
µν , are zero on u = 0.

However, they are sourced by lower order perturbations,
thus radiation is created spontaneously.
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Surface integrals & Simplified form

Change variables y ≡ ρ′

ρ , p ≡ (
√

2v − Φ(ρ))ρD−4 and q ≡ u
ρD−2 :

F (n)
m,Surf = − n!(−1)DΩD−4

ρ(D−3)(2n+Nu−Nv )(2π)
D−2

2

(√
2

q

)n
∫
DSurf

dy f (y)y
D−4

2 +nID,n
m (x?)

x? =
1 + y2 −

√
2q(p − ψ(y))

2y
, ψ(y)≡

{
−2 log y ,D = 4

2
D−4

[
1

yD−4 − 1
]
,D > 4

ρ dependence scales out!

Integrand depends only on p,q (hidden symmetry)!

Non-trivial domain DSurf : x? ≤ 1.
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Summary of the procedure

The numerical task at hand then involves the following steps:

1 Numerical search of integration domain DSurf , x? < 1:
Classification of roots & 1D bracketing.

2 Implementation of functions ID,n
m (x?): Polynomial (or series)

expansions & recurrence relations.

3 Removal of integrable singularities of ID,n
m (x?): adapted

changes of variables & polynomial (or series) expansions.

Main code written in C++ with GSL libraries for numerical
integration & bracketing algorithms.

I will show Mathematica checks/examples to illustrate.
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General advice from my experiences with numerics

Break down the problem (self contained/testable tasks)

Test your code to destruction: The earlier the better!

Be careful how you write expressions!

Identify operations to be done once instead of repeatedly

Be patient, take your time to code. It saves you time!
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Domain conditions

Consider the two following polynomials/functions (s = ±)

Cs(y) ≡ yD−2 + 2syD−3 − (
√

2qp − 1)yD−4 +
√

2qyD−4ψ (y)

Past light cone/collision condition x? ≤ 1 reduces to C−(y) ≤ 0.

See later x? = −1 induces integrable singularity @ C+(y) = 0!

One can also show that:
C+(y) ≥ C−(y).

For y ≥ 0 there are ≤ 2 roots for Cs(y) & a minimum at

ymin =
−s(D−3)+

√
1+
√

2q(D−2)((D−4)p+2)
D−2

⇒ Domain determination reduces to root finding
(see Mathematica example 1)
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Sensitive features of the integrand ID,n
m (x?)

Integrand contains several pieces to be computed with care:

1 Polynomials QD,n
m (x?), . . . coefficients defined differentially:

Example of task to be done once at the begining.
(see Mathematica example 2.1)

2 D odd contains a potentially problematic scalling.
Example where asymptotic expansions can be useful!
(see Mathematica example 2.2)

3 Singularities @ x? = s = ±1, due to
1√

±(1−x2
?)

= 1√
(1−x?)(±x?±1)

Adapted change of variable y = y root
s − kw2 & split domains.

Writing expressions & using series in problematic regions.

(see Mathematica example 2.3)
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Summary

So far we have seen:
How to superimpose two shock waves & write exact initial
conditions for evolution;
Formulated approximate perturbative scheme to find
gravitational perturbations close to axis;
Found the general perturbative solutions, order by order,
as source and volume integrals;
Addressed surface integrals with some practical examples.

Tomorrow⇒ Numerical results, radiation extraction
& Higher orders.
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